mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-02 12:36:54 -06:00
298 lines
12 KiB
C++
298 lines
12 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::PvsIntensiveQuantities
|
|
*/
|
|
#ifndef EWOMS_PVS_INTENSIVE_QUANTITIES_HH
|
|
#define EWOMS_PVS_INTENSIVE_QUANTITIES_HH
|
|
|
|
#include "pvsproperties.hh"
|
|
|
|
#include <opm/models/common/energymodule.hh>
|
|
#include <opm/models/common/diffusionmodule.hh>
|
|
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/constraintsolvers/MiscibleMultiPhaseComposition.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
#include <iostream>
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup PvsModel
|
|
* \ingroup IntensiveQuantities
|
|
*
|
|
* \brief Contains the quantities which are are constant within a
|
|
* finite volume in the compositional multi-phase primary
|
|
* variable switching model.
|
|
*/
|
|
template <class TypeTag>
|
|
class PvsIntensiveQuantities
|
|
: public GetPropType<TypeTag, Properties::DiscIntensiveQuantities>
|
|
, public DiffusionIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableDiffusion>() >
|
|
, public EnergyIntensiveQuantities<TypeTag, getPropValue<TypeTag, Properties::EnableEnergy>() >
|
|
, public GetPropType<TypeTag, Properties::FluxModule>::FluxIntensiveQuantities
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::DiscIntensiveQuantities>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using FluxModule = GetPropType<TypeTag, Properties::FluxModule>;
|
|
|
|
enum { switch0Idx = Indices::switch0Idx };
|
|
enum { pressure0Idx = Indices::pressure0Idx };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
|
|
using Toolbox = Opm::MathToolbox<Evaluation>;
|
|
using MiscibleMultiPhaseComposition = Opm::MiscibleMultiPhaseComposition<Scalar, FluidSystem, Evaluation>;
|
|
using ComputeFromReferencePhase = Opm::ComputeFromReferencePhase<Scalar, FluidSystem, Evaluation>;
|
|
|
|
using PhaseVector = Dune::FieldVector<Scalar, numPhases>;
|
|
using EvalPhaseVector = Dune::FieldVector<Evaluation, numPhases>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
using FluxIntensiveQuantities = typename FluxModule::FluxIntensiveQuantities;
|
|
using DiffusionIntensiveQuantities = Opm::DiffusionIntensiveQuantities<TypeTag, enableDiffusion>;
|
|
using EnergyIntensiveQuantities = Opm::EnergyIntensiveQuantities<TypeTag, enableEnergy>;
|
|
|
|
public:
|
|
//! The type of the object returned by the fluidState() method
|
|
using FluidState = Opm::CompositionalFluidState<Evaluation, FluidSystem>;
|
|
|
|
PvsIntensiveQuantities()
|
|
{ }
|
|
|
|
PvsIntensiveQuantities(const PvsIntensiveQuantities& other) = default;
|
|
|
|
PvsIntensiveQuantities& operator=(const PvsIntensiveQuantities& other) = default;
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::update
|
|
*/
|
|
void update(const ElementContext& elemCtx, unsigned dofIdx, unsigned timeIdx)
|
|
{
|
|
ParentType::update(elemCtx, dofIdx, timeIdx);
|
|
EnergyIntensiveQuantities::updateTemperatures_(fluidState_, elemCtx, dofIdx, timeIdx);
|
|
|
|
const auto& priVars = elemCtx.primaryVars(dofIdx, timeIdx);
|
|
const auto& problem = elemCtx.problem();
|
|
|
|
/////////////
|
|
// set the saturations
|
|
/////////////
|
|
Evaluation sumSat = 0.0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fluidState_.setSaturation(phaseIdx, priVars.explicitSaturationValue(phaseIdx, timeIdx));
|
|
Opm::Valgrind::CheckDefined(fluidState_.saturation(phaseIdx));
|
|
sumSat += fluidState_.saturation(phaseIdx);
|
|
}
|
|
Opm::Valgrind::CheckDefined(priVars.implicitSaturationIdx());
|
|
Opm::Valgrind::CheckDefined(sumSat);
|
|
fluidState_.setSaturation(priVars.implicitSaturationIdx(), 1.0 - sumSat);
|
|
|
|
/////////////
|
|
// set the pressures of the fluid phases
|
|
/////////////
|
|
|
|
// calculate capillary pressure
|
|
const MaterialLawParams& materialParams =
|
|
problem.materialLawParams(elemCtx, dofIdx, timeIdx);
|
|
EvalPhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fluidState_);
|
|
|
|
// set the absolute phase pressures in the fluid state
|
|
const Evaluation& p0 = priVars.makeEvaluation(pressure0Idx, timeIdx);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fluidState_.setPressure(phaseIdx, p0 + (pC[phaseIdx] - pC[0]));
|
|
|
|
/////////////
|
|
// calculate the phase compositions
|
|
/////////////
|
|
|
|
typename FluidSystem::template ParameterCache<Evaluation> paramCache;
|
|
unsigned lowestPresentPhaseIdx = priVars.lowestPresentPhaseIdx();
|
|
unsigned numNonPresentPhases = 0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!priVars.phaseIsPresent(phaseIdx))
|
|
++numNonPresentPhases;
|
|
}
|
|
|
|
// now comes the tricky part: calculate phase compositions
|
|
if (numNonPresentPhases == numPhases - 1) {
|
|
// only one phase is present, i.e. the primary variables
|
|
// contain the complete composition of the phase
|
|
Evaluation sumx = 0.0;
|
|
for (unsigned compIdx = 1; compIdx < numComponents; ++compIdx) {
|
|
const Evaluation& x = priVars.makeEvaluation(switch0Idx + compIdx - 1, timeIdx);
|
|
fluidState_.setMoleFraction(lowestPresentPhaseIdx, compIdx, x);
|
|
sumx += x;
|
|
}
|
|
|
|
// set the mole fraction of the first component
|
|
fluidState_.setMoleFraction(lowestPresentPhaseIdx, 0, 1 - sumx);
|
|
|
|
// calculate the composition of the remaining phases (as
|
|
// well as the densities of all phases). this is the job
|
|
// of the "ComputeFromReferencePhase" constraint solver
|
|
ComputeFromReferencePhase::solve(fluidState_, paramCache,
|
|
lowestPresentPhaseIdx,
|
|
/*setViscosity=*/true,
|
|
/*setEnthalpy=*/false);
|
|
}
|
|
else {
|
|
// create the auxiliary constraints
|
|
unsigned numAuxConstraints = numComponents + numNonPresentPhases - numPhases;
|
|
Opm::MMPCAuxConstraint<Evaluation> auxConstraints[numComponents];
|
|
|
|
unsigned auxIdx = 0;
|
|
unsigned switchIdx = 0;
|
|
for (; switchIdx < numPhases - 1; ++switchIdx) {
|
|
unsigned compIdx = switchIdx + 1;
|
|
unsigned switchPhaseIdx = switchIdx;
|
|
if (switchIdx >= lowestPresentPhaseIdx)
|
|
switchPhaseIdx += 1;
|
|
|
|
if (!priVars.phaseIsPresent(switchPhaseIdx)) {
|
|
auxConstraints[auxIdx].set(lowestPresentPhaseIdx, compIdx,
|
|
priVars.makeEvaluation(switch0Idx + switchIdx, timeIdx));
|
|
++auxIdx;
|
|
}
|
|
}
|
|
|
|
for (; auxIdx < numAuxConstraints; ++auxIdx, ++switchIdx) {
|
|
unsigned compIdx = numPhases - numNonPresentPhases + auxIdx;
|
|
auxConstraints[auxIdx].set(lowestPresentPhaseIdx, compIdx,
|
|
priVars.makeEvaluation(switch0Idx + switchIdx, timeIdx));
|
|
}
|
|
|
|
// both phases are present, i.e. phase compositions are a result of the the
|
|
// gas <-> liquid equilibrium. This is the job of the
|
|
// "MiscibleMultiPhaseComposition" constraint solver
|
|
MiscibleMultiPhaseComposition::solve(fluidState_, paramCache,
|
|
priVars.phasePresence(),
|
|
auxConstraints,
|
|
numAuxConstraints,
|
|
/*setViscosity=*/true,
|
|
/*setEnthalpy=*/false);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// make valgrind happy and set the enthalpies to NaN
|
|
if (!enableEnergy) {
|
|
Scalar myNan = std::numeric_limits<Scalar>::quiet_NaN();
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
fluidState_.setEnthalpy(phaseIdx, myNan);
|
|
}
|
|
#endif
|
|
|
|
/////////////
|
|
// calculate the remaining quantities
|
|
/////////////
|
|
|
|
// calculate relative permeabilities
|
|
MaterialLaw::relativePermeabilities(relativePermeability_,
|
|
materialParams, fluidState_);
|
|
Opm::Valgrind::CheckDefined(relativePermeability_);
|
|
|
|
// mobilities
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
|
|
mobility_[phaseIdx] =
|
|
relativePermeability_[phaseIdx] / fluidState().viscosity(phaseIdx);
|
|
|
|
// porosity
|
|
porosity_ = problem.porosity(elemCtx, dofIdx, timeIdx);
|
|
Opm::Valgrind::CheckDefined(porosity_);
|
|
|
|
// intrinsic permeability
|
|
intrinsicPerm_ = problem.intrinsicPermeability(elemCtx, dofIdx, timeIdx);
|
|
|
|
// update the quantities specific for the velocity model
|
|
FluxIntensiveQuantities::update_(elemCtx, dofIdx, timeIdx);
|
|
|
|
// energy related quantities
|
|
EnergyIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
|
|
|
|
// update the diffusion specific quantities of the intensive quantities
|
|
DiffusionIntensiveQuantities::update_(fluidState_, paramCache, elemCtx, dofIdx, timeIdx);
|
|
|
|
fluidState_.checkDefined();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::fluidState
|
|
*/
|
|
const FluidState& fluidState() const
|
|
{ return fluidState_; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::intrinsicPermeability
|
|
*/
|
|
const DimMatrix& intrinsicPermeability() const
|
|
{ return intrinsicPerm_; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::relativePermeability
|
|
*/
|
|
const Evaluation& relativePermeability(unsigned phaseIdx) const
|
|
{ return relativePermeability_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::mobility
|
|
*/
|
|
const Evaluation& mobility(unsigned phaseIdx) const
|
|
{ return mobility_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \copydoc ImmiscibleIntensiveQuantities::porosity
|
|
*/
|
|
const Evaluation& porosity() const
|
|
{ return porosity_; }
|
|
|
|
private:
|
|
FluidState fluidState_;
|
|
Evaluation porosity_;
|
|
DimMatrix intrinsicPerm_;
|
|
Evaluation relativePermeability_[numPhases];
|
|
Evaluation mobility_[numPhases];
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|