mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-02 04:26:55 -06:00
159 lines
5.6 KiB
C++
159 lines
5.6 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::RichardsNewtonMethod
|
|
*/
|
|
#ifndef EWOMS_RICHARDS_NEWTON_METHOD_HH
|
|
#define EWOMS_RICHARDS_NEWTON_METHOD_HH
|
|
|
|
#include "richardsproperties.hh"
|
|
|
|
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup RichardsModel
|
|
*
|
|
* \brief A Richards model specific Newton method.
|
|
*/
|
|
template <class TypeTag>
|
|
class RichardsNewtonMethod : public GetPropType<TypeTag, Properties::DiscNewtonMethod>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::DiscNewtonMethod>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Linearizer = GetPropType<TypeTag, Properties::Linearizer>;
|
|
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
enum { pressureWIdx = Indices::pressureWIdx };
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { liquidPhaseIdx = getPropValue<TypeTag, Properties::LiquidPhaseIndex>() };
|
|
enum { gasPhaseIdx = getPropValue<TypeTag, Properties::GasPhaseIndex>() };
|
|
|
|
using PhaseVector = Dune::FieldVector<Scalar, numPhases>;
|
|
|
|
public:
|
|
RichardsNewtonMethod(Simulator& simulator) : ParentType(simulator)
|
|
{}
|
|
|
|
protected:
|
|
friend NewtonMethod<TypeTag>;
|
|
friend ParentType;
|
|
|
|
/*!
|
|
* \copydoc FvBaseNewtonMethod::updatePrimaryVariables_
|
|
*/
|
|
void updatePrimaryVariables_(unsigned globalDofIdx,
|
|
PrimaryVariables& nextValue,
|
|
const PrimaryVariables& currentValue,
|
|
const EqVector& update,
|
|
const EqVector&)
|
|
{
|
|
// normal Newton-Raphson update
|
|
nextValue = currentValue;
|
|
nextValue -= update;
|
|
|
|
// do not clamp anything after 4 iterations
|
|
if (this->numIterations_ > 4)
|
|
return;
|
|
|
|
const auto& problem = this->simulator_.problem();
|
|
|
|
// calculate the old wetting phase saturation
|
|
const MaterialLawParams& matParams =
|
|
problem.materialLawParams(globalDofIdx, /*timeIdx=*/0);
|
|
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
|
|
// set the temperature
|
|
Scalar T = problem.temperature(globalDofIdx, /*timeIdx=*/0);
|
|
fs.setTemperature(T);
|
|
|
|
/////////
|
|
// calculate the phase pressures of the previous iteration
|
|
/////////
|
|
|
|
// first, we have to find the minimum capillary pressure
|
|
// (i.e. Sw = 0)
|
|
fs.setSaturation(liquidPhaseIdx, 1.0);
|
|
fs.setSaturation(gasPhaseIdx, 0.0);
|
|
PhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
|
|
// non-wetting pressure can be larger than the
|
|
// reference pressure if the medium is fully
|
|
// saturated by the wetting phase
|
|
Scalar pWOld = currentValue[pressureWIdx];
|
|
Scalar pNOld =
|
|
std::max(problem.referencePressure(globalDofIdx, /*timeIdx=*/0),
|
|
pWOld + (pC[gasPhaseIdx] - pC[liquidPhaseIdx]));
|
|
|
|
/////////
|
|
// find the saturations of the previous iteration
|
|
/////////
|
|
fs.setPressure(liquidPhaseIdx, pWOld);
|
|
fs.setPressure(gasPhaseIdx, pNOld);
|
|
|
|
PhaseVector satOld;
|
|
MaterialLaw::saturations(satOld, matParams, fs);
|
|
satOld[liquidPhaseIdx] = std::max<Scalar>(0.0, satOld[liquidPhaseIdx]);
|
|
|
|
/////////
|
|
// find the wetting phase pressures which
|
|
// corrospond to a 20% increase and a 20% decrease
|
|
// of the wetting saturation
|
|
/////////
|
|
fs.setSaturation(liquidPhaseIdx, satOld[liquidPhaseIdx] - 0.2);
|
|
fs.setSaturation(gasPhaseIdx, 1.0 - (satOld[liquidPhaseIdx] - 0.2));
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
Scalar pwMin = pNOld - (pC[gasPhaseIdx] - pC[liquidPhaseIdx]);
|
|
|
|
fs.setSaturation(liquidPhaseIdx, satOld[liquidPhaseIdx] + 0.2);
|
|
fs.setSaturation(gasPhaseIdx, 1.0 - (satOld[liquidPhaseIdx] + 0.2));
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
Scalar pwMax = pNOld - (pC[gasPhaseIdx] - pC[liquidPhaseIdx]);
|
|
|
|
/////////
|
|
// clamp the result to the minimum and the maximum
|
|
// pressures we just calculated
|
|
/////////
|
|
Scalar pW = nextValue[pressureWIdx];
|
|
pW = std::max(pwMin, std::min(pW, pwMax));
|
|
nextValue[pressureWIdx] = pW;
|
|
}
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|