Files
opm-simulators/src/cfs_tpfa.c
Atgeirr Flø Rasmussen 893109f8c6 Merged.
2011-04-18 13:52:54 +02:00

1281 lines
39 KiB
C

#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "blas_lapack.h"
#include "flow_bc.h"
#include "well.h"
#include "compr_quant.h"
#include "trans_tpfa.h"
#include "cfs_tpfa.h"
#include "sparse_sys.h"
#if defined(MAX)
#undef MAX
#endif
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
struct densrat_util {
MAT_SIZE_T *ipiv;
double *lu;
double *x;
double *Ai_y;
double *psum;
/* Storage */
double *ddata;
};
struct cfs_tpfa_impl {
/* Reservoir flow */
double *ctrans;
double *accum;
/* One entry per component per face */
double *masstrans_f; /* RB^{-1} [ phase-mobility ] */
double *gravtrans_f; /* RB^{-1} [ grav + capillary ] */
/* Compressible completion flow definition */
double *wtrans; /* WI * sum((Ac \ Ap) [ pmob ]) */
double *wgpot; /* WI * sum((Ac \ Ap) [ pmob ]'*WdP) */
/* One entry per component per completion/perforation */
double *masstrans_p; /* RB^{-1} [ phase-mobility ] */
double *gravtrans_p; /* RB^{-1} [ grav ] */
struct densrat_util *ratio;
/* Linear storage */
double *ddata;
};
/* ---------------------------------------------------------------------- */
static void
deallocate_densrat(struct densrat_util *ratio)
/* ---------------------------------------------------------------------- */
{
if (ratio != NULL) {
free(ratio->ddata);
free(ratio->ipiv);
}
free(ratio);
}
/* ---------------------------------------------------------------------- */
static struct densrat_util *
allocate_densrat(grid_t *g, well_t *w, int np)
/* ---------------------------------------------------------------------- */
{
int ntotperf;
size_t nglobconn, ntotconn, ddata_sz;
struct densrat_util *new;
new = malloc(1 * sizeof *new);
if (new != NULL) {
if (w != NULL) {
ntotperf = w->well_connpos[ w->number_of_wells ];
} else {
ntotperf = 0;
}
nglobconn = MAX(g->number_of_faces , ntotperf);
ntotconn = MAX(g->cell_facepos[ g->number_of_cells ], ntotperf);
ddata_sz = np * np; /* lu */
ddata_sz += np * nglobconn; /* x */
ddata_sz += np * ntotconn; /* Ai_y */
ddata_sz += 1 * ntotconn; /* psum */
new->ipiv = malloc(np * sizeof *new->ipiv);
new->ddata = malloc(ddata_sz * sizeof *new->ddata);
if ((new->ipiv == NULL) || (new->ddata == NULL)) {
deallocate_densrat(new);
new = NULL;
} else {
new->lu = new->ddata + 0 ;
new->x = new->lu + np * np ;
new->Ai_y = new->x + np * nglobconn;
new->psum = new->Ai_y + np * ntotconn ;
}
}
return new;
}
/* ---------------------------------------------------------------------- */
static void
impl_deallocate(struct cfs_tpfa_impl *pimpl)
/* ---------------------------------------------------------------------- */
{
if (pimpl != NULL) {
free (pimpl->ddata);
deallocate_densrat(pimpl->ratio);
}
free(pimpl);
}
/* ---------------------------------------------------------------------- */
static struct cfs_tpfa_impl *
impl_allocate(grid_t *G, well_t *W, int np)
/* ---------------------------------------------------------------------- */
{
size_t nnu, ngconn, nwperf;
struct cfs_tpfa_impl *new;
size_t ddata_sz;
nnu = G->number_of_cells;
ngconn = G->cell_facepos[ G->number_of_cells ];
nwperf = 0;
if (W != NULL) {
nnu += W->number_of_wells;
nwperf = W->well_connpos[ W->number_of_wells ];
}
/* Linear system */
ddata_sz = 2 * nnu; /* b, x */
/* Reservoir */
ddata_sz += 1 * ngconn; /* ctrans */
ddata_sz += 1 * G->number_of_cells; /* accum */
ddata_sz += np * G->number_of_faces; /* masstrans_f */
ddata_sz += np * G->number_of_faces; /* gravtrans_f */
/* Wells */
ddata_sz += 1 * nwperf; /* wtrans */
ddata_sz += 1 * nwperf; /* wgpot */
ddata_sz += np * nwperf; /* masstrans_p */
ddata_sz += np * nwperf; /* gravtrans_p */
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->ddata = malloc(ddata_sz * sizeof *new->ddata);
new->ratio = allocate_densrat(G, W, np);
if (new->ddata == NULL || new->ratio == NULL) {
impl_deallocate(new);
new = NULL;
}
}
return new;
}
/* ---------------------------------------------------------------------- */
static struct CSRMatrix *
construct_matrix(grid_t *G, well_t *W)
/* ---------------------------------------------------------------------- */
{
int f, c1, c2, w, i, nc, nnu;
size_t nnz;
struct CSRMatrix *A;
nc = nnu = G->number_of_cells;
if (W != NULL) {
nnu += W->number_of_wells;
}
A = csrmatrix_new_count_nnz(nnu);
if (A != NULL) {
/* Self connections */
for (i = 0; i < nnu; i++) {
A->ia[ i + 1 ] = 1;
}
/* Other connections */
for (f = 0; f < G->number_of_faces; f++) {
c1 = G->face_cells[2*f + 0];
c2 = G->face_cells[2*f + 1];
if ((c1 >= 0) && (c2 >= 0)) {
A->ia[ c1 + 1 ] += 1;
A->ia[ c2 + 1 ] += 1;
}
}
if (W != NULL) {
/* Well <-> cell connections */
for (w = i = 0; w < W->number_of_wells; w++) {
for (; i < W->well_connpos[w + 1]; i++) {
c1 = W->well_cells[i];
A->ia[ 0 + c1 + 1 ] += 1; /* c -> w */
A->ia[ nc + w + 1 ] += 1; /* w -> c */
}
}
}
nnz = csrmatrix_new_elms_pushback(A);
if (nnz == 0) {
csrmatrix_delete(A);
A = NULL;
}
}
if (A != NULL) {
/* Fill self connections */
for (i = 0; i < nnu; i++) {
A->ja[ A->ia[ i + 1 ] ++ ] = i;
}
/* Fill other connections */
for (f = 0; f < G->number_of_faces; f++) {
c1 = G->face_cells[2*f + 0];
c2 = G->face_cells[2*f + 1];
if ((c1 >= 0) && (c2 >= 0)) {
A->ja[ A->ia[ c1 + 1 ] ++ ] = c2;
A->ja[ A->ia[ c2 + 1 ] ++ ] = c1;
}
}
if (W != NULL) {
/* Fill well <-> cell connections */
for (w = i = 0; w < W->number_of_wells; w++) {
for (; i < W->well_connpos[w + 1]; i++) {
c1 = W->well_cells[i];
A->ja[ A->ia[ 0 + c1 + 1 ] ++ ] = nc + w;
A->ja[ A->ia[ nc + w + 1 ] ++ ] = c1 ;
}
}
}
assert ((size_t) A->ia[ nnu ] == nnz);
/* Enforce sorted connection structure per row */
csrmatrix_sortrows(A);
}
return A;
}
/* ---------------------------------------------------------------------- */
static void
solve_cellsys_core(grid_t *G ,
size_t sz ,
const double *Ac ,
const double *bf ,
double *xcf ,
double *luAc,
MAT_SIZE_T *ipiv)
/* ---------------------------------------------------------------------- */
{
int c, i, f;
size_t j, p2;
double *v;
MAT_SIZE_T nrows, ncols, ldA, ldX, nrhs, info;
nrows = ncols = ldA = ldX = sz;
info = 0;
v = xcf;
for (c = 0, p2 = 0; c < G->number_of_cells; c++) {
/* Define right-hand sides for local systems */
for (i = G->cell_facepos[c + 0], nrhs = 0;
i < G->cell_facepos[c + 1]; i++, nrhs++) {
f = G->cell_faces[i];
for (j = 0; j < sz; j++) {
v[nrhs*sz + j] = bf[f*sz + j];
}
}
/* Factor Ac */
memcpy(luAc, Ac + p2, sz * sz * sizeof *luAc);
dgetrf_(&nrows, &ncols, luAc, &ldA, ipiv, &info);
/* Solve local systems */
dgetrs_("No Transpose", &nrows, &nrhs,
luAc, &ldA, ipiv, v, &ldX, &info);
v += nrhs * sz;
p2 += sz * sz;
}
}
/* ---------------------------------------------------------------------- */
static void
small_matvec(size_t n,
int sz,
const double *A,
const double *X,
double *Y)
/* ---------------------------------------------------------------------- */
{
size_t i, p1, p2;
MAT_SIZE_T nrows, ncols, ld, incx, incy;
double a1, a2;
nrows = ncols = ld = sz;
incx = incy = 1;
a1 = 1.0;
a2 = 0.0;
for (i = p1 = p2 = 0; i < n; i++) {
dgemv_("No Transpose", &nrows, &ncols,
&a1, A + p2, &ld, X + p1, &incx,
&a2, Y + p1, &incy);
p1 += sz;
p2 += sz * sz;
}
}
/* ---------------------------------------------------------------------- */
static void
solve_cellsys(grid_t *G ,
size_t sz,
const double *Ac,
const double *bf,
struct densrat_util *ratio)
/* ---------------------------------------------------------------------- */
{
solve_cellsys_core(G, sz, Ac, bf, ratio->Ai_y,
ratio->lu, ratio->ipiv);
}
/* ---------------------------------------------------------------------- */
static void
set_dynamic_trans(grid_t *G ,
const double *trans,
struct compr_quantities *cq ,
struct densrat_util *ratio)
/* ---------------------------------------------------------------------- */
{
int f, p, i;
for (f = i = 0; f < G->number_of_faces; f++) {
for (p = 0; p < cq->nphases; p++, i++) {
ratio->x[i] = trans[f] * cq->phasemobf[i];
}
}
}
/* ---------------------------------------------------------------------- */
static void
set_dynamic_grav(grid_t *G ,
flowbc_t *bc ,
const double *trans ,
const double *gravcap_f,
struct compr_quantities *cq ,
struct densrat_util *ratio)
/* ---------------------------------------------------------------------- */
{
int f, p, i, c1, c2;
for (f = i = 0; f < G->number_of_faces; f++) {
c1 = G->face_cells[2*f + 0];
c2 = G->face_cells[2*f + 1];
if (((c1 >= 0) && (c2 >= 0)) || (bc->type[f] == PRESSURE)) {
for (p = 0; p < cq->nphases; p++, i++) {
ratio->x[i] = trans[f] * gravcap_f[i] * cq->phasemobf[i];
}
} else {
for (p = 0; p < cq->nphases; p++, i++) {
ratio->x[i] = 0.0;
}
}
}
}
/* ---------------------------------------------------------------------- */
static void
set_dynamic_trans_well(well_t *W,
size_t np,
struct completion_data *wdata,
struct densrat_util *ratio)
/* ---------------------------------------------------------------------- */
{
size_t p, i, k, nconn;
nconn = W->well_connpos[ W->number_of_wells ];
for (i = k = 0; i < nconn; i++) {
for (p = 0; p < np; p++, k++) {
ratio->x[k] = wdata->WI[i] * wdata->phasemob[k];
}
}
}
/* ---------------------------------------------------------------------- */
static void
set_dynamic_grav_well(well_t *W,
size_t np,
struct completion_data *wdata,
struct densrat_util *ratio)
/* ---------------------------------------------------------------------- */
{
size_t p, i, k, nconn;
nconn = W->well_connpos[ W->number_of_wells ];
for (i = k = 0; i < nconn; i++) {
for (p = 0; p < np; p++, k++) {
ratio->x[k] = wdata->WI[i] * wdata->gpot[k] * wdata->phasemob[k];
}
}
}
/* ---------------------------------------------------------------------- */
static void
sum_phase_contrib(grid_t *G ,
size_t sz ,
const double *xcf,
double *sum)
/* ---------------------------------------------------------------------- */
{
int c, i;
size_t j;
const double *v;
for (c = i = 0, v = xcf; c < G->number_of_cells; c++) {
for (; i < G->cell_facepos[c + 1]; i++, v += sz) {
sum[i] = 0.0;
for (j = 0; j < sz; j++) {
sum[i] += v[j];
}
}
}
}
/* ---------------------------------------------------------------------- */
static void
compute_densrat_update(grid_t *G ,
struct compr_quantities *cq ,
struct densrat_util *ratio,
double *q)
/* ---------------------------------------------------------------------- */
{
/* q = Af * x */
small_matvec(G->number_of_faces, cq->nphases, cq->Af, ratio->x, q);
/* ratio->Ai_y = Ac \ q */
solve_cellsys(G, cq->nphases, cq->Ac, q, ratio);
/* ratio->psum = sum_\alpha ratio->Ai_y */
sum_phase_contrib(G, cq->nphases, ratio->Ai_y, ratio->psum);
}
/* ---------------------------------------------------------------------- */
static void
compute_densrat_update_well(well_t *W ,
struct completion_data *wdata,
struct compr_quantities *cq ,
struct densrat_util *ratio,
double *q)
/* ---------------------------------------------------------------------- */
{
size_t c, i, nconn, p, np, np2;
MAT_SIZE_T nrows, ncols, ldA, ldX, nrhs, info, incx, incy;
double a1, a2;
nconn = W->well_connpos[ W->number_of_wells ];
np = cq->nphases;
np2 = np * np;
nrows = ncols = ldA = ldX = np;
incx = incy = nrhs = 1;
a1 = 1.0;
a2 = 0.0;
for (i = 0; i < nconn; i++) {
c = W->well_cells[i];
/* Compute q = A*x on completion */
dgemv_("No Transpose", &nrows, &ncols,
&a1, wdata->A + i*np2, &ldA, ratio->x + i*np, &incx,
&a2, q + i*np, &incy);
/* Form system RHS */
for (p = 0; p < np; p++) {
ratio->Ai_y[i*np + p] = q[i*np + p];
}
/* Factor A in cell 'c' */
memcpy(ratio->lu, cq->Ac + c*np2, np2 * sizeof *ratio->lu);
dgetrf_(&nrows, &ncols, ratio->lu, &ldA, ratio->ipiv, &info);
/* Solve local system (=> Ai_y = Ac \ (A*x)) */
dgetrs_("No Transpose" , &nrows, &nrhs,
ratio->lu , &ldA, ratio->ipiv,
ratio->Ai_y + i*np, &ldX, &info);
/* Accumulate phase contributions */
ratio->psum[i] = 0.0;
for (p = 0; p < np; p++) {
ratio->psum[i] += ratio->Ai_y[i*np + p];
}
}
}
/* ---------------------------------------------------------------------- */
static void
compute_psys_contrib(grid_t *G,
well_t *W,
struct completion_data *wdata,
flowbc_t *bc,
struct compr_quantities *cq,
double dt,
const double *trans,
const double *gravcap_f,
const double *cpress0,
const double *porevol,
struct cfs_tpfa_data *h)
/* ---------------------------------------------------------------------- */
{
int c, nc, i, f;
size_t nconn;
double s;
nc = G->number_of_cells;
nconn = G->cell_facepos[nc];
/* Compressible half-trans */
set_dynamic_trans(G, trans, cq, h->pimpl->ratio);
compute_densrat_update(G, cq, h->pimpl->ratio,
h->pimpl->masstrans_f);
memcpy(h->pimpl->ctrans,
h->pimpl->ratio->psum,
nconn * sizeof *h->pimpl->ctrans);
/* Compressible gravity contributions */
set_dynamic_grav(G, bc, trans, gravcap_f, cq, h->pimpl->ratio);
compute_densrat_update(G, cq, h->pimpl->ratio,
h->pimpl->gravtrans_f);
for (c = 0, i = 0; c < nc; c++) {
for (; i < G->cell_facepos[c + 1]; i++) {
f = G->cell_faces[i];
s = 1.0 - 2.0*(G->face_cells[2*f + 0] != c);
h->b[c] -= s * h->pimpl->ratio->psum[i];
}
h->b[c] += cq->voldiscr[c];
}
/* Compressible accumulation term (lhs and rhs) */
compr_accum_term(nc, dt, porevol, cq->totcompr, h->pimpl->accum);
compr_src_add_press_accum(nc, cpress0, h->pimpl->accum, h->b);
/* Compressible well contributions */
if ((W != NULL) && (wdata != NULL)) {
nconn = W->well_connpos[ W->number_of_wells ];
set_dynamic_trans_well(W, cq->nphases, wdata, h->pimpl->ratio);
compute_densrat_update_well(W, wdata, cq, h->pimpl->ratio,
h->pimpl->masstrans_p);
memcpy(h->pimpl->wtrans,
h->pimpl->ratio->psum, nconn * sizeof *h->pimpl->wtrans);
set_dynamic_grav_well(W, cq->nphases, wdata, h->pimpl->ratio);
compute_densrat_update_well(W, wdata, cq, h->pimpl->ratio,
h->pimpl->gravtrans_p);
memcpy(h->pimpl->wgpot,
h->pimpl->ratio->psum, nconn * sizeof *h->pimpl->wgpot);
}
}
/* ---------------------------------------------------------------------- */
static int
assemble_cell_contrib(grid_t *G,
flowbc_t *bc,
const double *src,
struct cfs_tpfa_data *h)
/* ---------------------------------------------------------------------- */
{
int c1, c2, c, i, f, j1, j2;
int is_neumann;
const double *ctrans = h->pimpl->ctrans;
is_neumann = 1;
for (c = i = 0; c < G->number_of_cells; c++) {
j1 = csrmatrix_elm_index(c, c, h->A);
for (; i < G->cell_facepos[c + 1]; i++) {
f = G->cell_faces[i];
c1 = G->face_cells[2*f + 0];
c2 = G->face_cells[2*f + 1];
c2 = (c1 == c) ? c2 : c1;
if (c2 >= 0) {
j2 = csrmatrix_elm_index(c, c2, h->A);
h->A->sa[j1] += ctrans[i];
h->A->sa[j2] -= ctrans[i];
} else if (bc->type[f] == PRESSURE) {
is_neumann = 0;
h->A->sa[j1] += ctrans[i];
h->b [c ] += ctrans[i] * bc->bcval[f];
}
}
h->b[c] += src[c];
/* Compressible accumulation term */
h->A->sa[j1] += h->pimpl->accum[c];
}
return is_neumann;
}
/* ---------------------------------------------------------------------- */
static int
assemble_well_contrib(size_t nc,
well_t *W,
well_control_t *wctrl,
struct cfs_tpfa_data *h)
/* ---------------------------------------------------------------------- */
{
int c, i, w;
int is_neumann, is_bhp;
size_t jc, jw;
double wtrans, dp;
is_neumann = 1;
for (w = i = 0; w < W->number_of_wells; w++) {
is_bhp = wctrl->ctrl[w] == BHP;
for (; i < W->well_connpos[w + 1]; i++) {
c = W->well_cells[i];
wtrans = h->pimpl->wtrans[i]; /* WI * sum((Ac\Ap)*[pmob] */
dp = h->pimpl->wgpot [i]; /* WI * sum((Ac\Ap)*[pmob]'*dP */
if (is_bhp) {
h->b[0 + c] += dp + wtrans * wctrl->target[w];
h->b[nc + w] += wtrans * wctrl->target[w];
} else {
jc = csrmatrix_elm_index(c, nc + w, h->A);
h->A->sa[jc] -= wtrans;
h->b [ c] += dp;
jc = csrmatrix_elm_index(nc + w, c, h->A);
h->A->sa[jc] -= wtrans;
h->b[nc + w] -= dp;
}
jc = csrmatrix_elm_index(0 + c, 0 + c, h->A);
jw = csrmatrix_elm_index(nc + w, nc + w, h->A);
h->A->sa[jc] += wtrans;
h->A->sa[jw] += wtrans;
}
is_neumann = is_neumann && (! is_bhp);
if (! is_bhp) {
/* Enforce total (reservoir volume) rate constraint. */
h->b[nc + w] += wctrl->target[w];
}
}
return is_neumann;
}
/* ---------------------------------------------------------------------- */
static void
compute_fpress(grid_t *G,
flowbc_t *bc,
int np,
const double *htrans,
const double *pmobf,
const double *gravcap_f,
const double *cpress,
const double *fflux,
double *fpress)
/* ---------------------------------------------------------------------- */
{
int c, i, f, p, c1, c2;
double t, s;
for (f = 0; f < G->number_of_faces; f++) {
fpress[f] = 0.0;
}
for (c = i = 0; c < G->number_of_cells; c++) {
for (; i < G->cell_facepos[c + 1]; i++) {
f = G->cell_faces[i];
t = 0.0;
for (p = 0; p < np; p++) {
t += pmobf[f*np + p];
}
t *= htrans[i];
s = 2.0*(G->face_cells[2*f + 0] == c) - 1.0;
fpress[f] += cpress[c] - (s * fflux[f] / t);
}
}
for (f = 0; f < G->number_of_faces; f++) {
c1 = G->face_cells[2*f + 0];
c2 = G->face_cells[2*f + 1];
fpress[f] /= (c1 >= 0) + (c2 >= 0);
if (((c1 < 0) || (c2 < 0)) && (bc->type[f] == PRESSURE)) {
fpress[f] = bc->bcval[f];
}
}
}
/* ---------------------------------------------------------------------- */
static void
compute_flux(grid_t *G,
flowbc_t *bc,
int np,
const double *trans,
const double *pmobf,
const double *gravcap_f,
const double *cpress,
double *fflux)
/* ---------------------------------------------------------------------- */
{
int f, c1, c2, p;
double t, dp, g;
for (f = 0; f < G->number_of_faces; f++) {
c1 = G->face_cells[2*f + 0];
c2 = G->face_cells[2*f + 1];
if (((c1 < 0) || (c2 < 0)) && (bc->type[f] == FLUX)) {
fflux[f] = bc->bcval[f];
continue;
}
t = g = 0.0;
for (p = 0; p < np; p++) {
t += pmobf[f*np + p];
g += pmobf[f*np + p] * gravcap_f[f*np + p];
}
/* t *= trans[f]; */
if ((c1 >= 0) && (c2 >= 0)) {
dp = cpress[c1] - cpress[c2];
} else if (bc->type[f] == PRESSURE) {
if (c1 < 0) {
dp = bc->bcval[f] - cpress[c2];
/* g = -g; */
} else {
dp = cpress[c1] - bc->bcval[f];
}
} else {
/* No BC -> no-flow (== pressure drop offsets gravity) */
dp = -g / t;
}
fflux[f] = trans[f] * (t*dp + g);
}
}
/* ---------------------------------------------------------------------- */
static void
compute_wflux(well_t *W,
size_t np,
struct completion_data *wdata,
const double *cpress,
const double *wpress,
double *wflux)
/* ---------------------------------------------------------------------- */
{
int c, i, w;
size_t p;
double dp;
double *pmob, *gpot;
pmob = wdata->phasemob;
gpot = wdata->gpot;
for (w = i = 0; w < W->number_of_wells; w++) {
for (; i < W->well_connpos[w + 1]; i++) {
c = W->well_cells[i];
dp = wpress[w] - cpress[c];
wflux[i] = 0.0;
for (p = 0; p < np; p++) {
wflux[i] += pmob[i*np + p] * (dp + gpot[i*np + p]);
}
wflux[i] *= wdata->WI[i];
}
}
}
/* ---------------------------------------------------------------------- */
static int
is_incompr(int nc, struct compr_quantities *cq)
/* ---------------------------------------------------------------------- */
{
int c, incompr;
for (c = 0, incompr = 1; (c < nc) && incompr; ++c) {
incompr = cq->totcompr[c] == 0.0;
}
return incompr;
}
/* ======================================================================
* Public interface below separator.
* ====================================================================== */
/* ---------------------------------------------------------------------- */
struct cfs_tpfa_data *
cfs_tpfa_construct(grid_t *G, well_t *W, int nphases)
/* ---------------------------------------------------------------------- */
{
size_t nc, nf, ngconn, nwconn;
struct cfs_tpfa_data *new;
new = malloc(1 * sizeof *new);
if (new != NULL) {
new->pimpl = impl_allocate(G, W, nphases);
new->A = construct_matrix(G, W);
if ((new->pimpl == NULL) || (new->A == NULL)) {
cfs_tpfa_destroy(new);
new = NULL;
}
}
if (new != NULL) {
nc = G->number_of_cells;
nf = G->number_of_faces;
ngconn = G->cell_facepos[nc];
nwconn = 0;
if (W != NULL) {
nwconn = W->well_connpos[ W->number_of_wells ];
}
/* Allocate linear system components */
new->b = new->pimpl->ddata + 0;
new->x = new->b + new->A->m;
/* Allocate reservoir components */
new->pimpl->ctrans = new->x + new->A->m;
new->pimpl->accum = new->pimpl->ctrans + ngconn;
new->pimpl->masstrans_f = new->pimpl->accum + nc;
new->pimpl->gravtrans_f = new->pimpl->masstrans_f + (nphases * nf);
/* Allocate well components */
new->pimpl->wtrans = new->pimpl->gravtrans_f + (nphases * nf);
new->pimpl->wgpot = new->pimpl->wtrans + nwconn;
new->pimpl->masstrans_p = new->pimpl->wgpot + nwconn;
new->pimpl->gravtrans_p = new->pimpl->masstrans_p + (nphases * nwconn);
}
return new;
}
/* ---------------------------------------------------------------------- */
void
cfs_tpfa_assemble(grid_t *G,
double dt,
well_t *W,
flowbc_t *bc,
const double *src,
struct compr_quantities *cq,
const double *trans,
const double *gravcap_f,
well_control_t *wctrl,
struct completion_data *wdata,
const double *cpress0,
const double *porevol,
struct cfs_tpfa_data *h)
/* ---------------------------------------------------------------------- */
{
int res_is_neumann, well_is_neumann;
csrmatrix_zero( h->A);
vector_zero (h->A->m, h->b);
compute_psys_contrib(G, W, wdata, bc, cq, dt,
trans, gravcap_f, cpress0, porevol, h);
res_is_neumann = assemble_cell_contrib(G, bc, src, h);
if ((W != NULL) && (wctrl != NULL)) {
assert (wdata != NULL);
well_is_neumann = assemble_well_contrib(G->number_of_cells,
W, wctrl, h);
} else {
well_is_neumann = 1;
}
if (res_is_neumann && well_is_neumann &&
is_incompr(G->number_of_cells, cq)) {
h->A->sa[0] *= 2;
}
}
/* ---------------------------------------------------------------------- */
void
cfs_tpfa_press_flux(grid_t *G,
flowbc_t *bc,
well_t *W,
int np,
const double *trans,
const double *pmobf,
const double *gravcap_f,
struct completion_data *wdata,
struct cfs_tpfa_data *h,
double *cpress,
double *fflux,
double *wpress,
double *wflux)
/* ---------------------------------------------------------------------- */
{
/* Assign cell pressure directly from solution vector */
memcpy(cpress, h->x, G->number_of_cells * sizeof *cpress);
compute_flux(G, bc, np, trans, pmobf, gravcap_f, cpress, fflux);
if ((W != NULL) && (wdata != NULL)) {
assert (wpress != NULL);
assert (wflux != NULL);
/* Assign well BHP directly from solution vector */
memcpy(wpress, h->x + G->number_of_cells,
W->number_of_wells * sizeof *wpress);
compute_wflux(W, np, wdata, cpress, wpress, wflux);
}
}
/* ---------------------------------------------------------------------- */
void
cfs_tpfa_fpress(grid_t *G,
flowbc_t *bc,
int np,
const double *htrans,
const double *pmobf,
const double *gravcap_f,
const double *cpress,
const double *fflux,
double *fpress)
/* ---------------------------------------------------------------------- */
{
compute_fpress(G, bc, np, htrans, pmobf, gravcap_f,
cpress, fflux, fpress);
}
/* ---------------------------------------------------------------------- */
void
cfs_tpfa_retrieve_masstrans(grid_t *G,
int np,
struct cfs_tpfa_data *h,
double *masstrans_f)
/* ---------------------------------------------------------------------- */
{
memcpy(masstrans_f, h->pimpl->masstrans_f,
np * G->number_of_faces * sizeof *masstrans_f);
}
/* ---------------------------------------------------------------------- */
void
cfs_tpfa_retrieve_gravtrans(grid_t *G,
int np,
struct cfs_tpfa_data *h,
double *gravtrans_f)
/* ---------------------------------------------------------------------- */
{
memcpy(gravtrans_f, h->pimpl->gravtrans_f,
np * G->number_of_faces * sizeof *gravtrans_f);
}
/* ---------------------------------------------------------------------- */
static double
cfs_tpfa_impes_maxtime_cell(int c,
grid_t *G,
struct compr_quantities *cq,
const double *trans,
const double *porevol,
struct cfs_tpfa_data *h,
const double *dpmobf,
const double *surf_dens,
const double *gravity)
/* ---------------------------------------------------------------------- */
{
/* Reference:
K. H. Coats, "IMPES Stability: The Stable Step", SPE 69225
Capillary pressure parts not included.
*/
int i, j, k, f, c2;
double f11, f12, f21, f22;
double dp, dzg, tr, tmob, detF, eqv_flux;
const double *pmob;
const double *A;
/* This is intended to be compatible with the dune-porsol blackoil
code. This library is otherwise not depending on particular
orderings of phases or components, so at some point this
function should be generalized. */
assert (cq->nphases == 3);
enum { Water = 0, Oil = 1, Gas = 2 };
enum { num_phases = 3 };
double rho[num_phases];
double pot[num_phases];
/* Notation: dpmob[Oil][Water] is d/ds_w(lambda_o) */
double dpmob[num_phases][num_phases]
= { {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0} };
f11 = f12 = f21 = f22 = 0.0;
/* Loop over neighbour faces to accumulate f11, f12 etc. */
for (i = G->cell_facepos[c]; i < G->cell_facepos[c + 1]; ++i) {
f = G->cell_faces[i];
if ((c2 = G->face_cells[2*f + 0]) == c) {
c2 = G->face_cells[2*f + 1];
}
/* Initially only interiour faces */
if (c2 < 0) {
continue;
}
/* Computing density */
A = cq->Af + f*(cq->nphases)*(cq->nphases);
for (j = 0; j < cq->nphases; ++j) {
rho[j] = 0.0;
for (k = 0; k < cq->nphases; ++k) {
rho[j] += A[cq->nphases*j + k]*surf_dens[k];
}
}
/* Computing gravity potentials */
dp = h->x[c] - h->x[c2];
dzg = 0.0;
for (j = 0; j < G->dimensions; ++j) {
dzg += (G->cell_centroids[G->dimensions*c + j] - G->cell_centroids[G->dimensions*c2 + j])*gravity[j];
}
for (j = 0; j < cq->nphases; ++j) {
pot[j] = fabs(dp - rho[j]*dzg);
}
/* Filling the dpmob array from available data.
Note that we only need the following combinations:
(Water, Water)
(Water, Gas)
(Oil, Water)
(Oil, Gas)
(Gas, Gas)
No derivatives w.r.t. Oil is needed, since there are only two
independent saturation variables.
The lack of (Gas, Water) may be due to assumptions on the
three-phase model used (should be checked to be compatible
with our choices).
*/
dpmob[Water][Water] = dpmobf[9*f];
dpmob[Water][Gas] = dpmobf[9*f + 2];
dpmob[Oil][Water] = dpmobf[9*f + 3];
dpmob[Oil][Gas] = dpmobf[9*f + 5];
dpmob[Gas][Gas] = dpmobf[9*f + 8];
/* Computing the flux parts f_ij */
pmob = cq->phasemobf + f*cq->nphases;
tr = trans[f];
tmob = pmob[Water] + pmob[Oil] + pmob[Gas];
f11 += tr*((pmob[Oil] + pmob[Gas])*dpmob[Water][Water]*pot[Water]
- pmob[Water]*dpmob[Oil][Water]*pot[Oil])/tmob;
f12 += -tr*(pmob[Water]*dpmob[Oil][Gas]*pot[Oil]
+ pmob[Water]*dpmob[Gas][Gas]*pot[Gas]
- (pmob[Oil] + pmob[Gas])*dpmob[Water][Gas]*pot[Water])/tmob;
f21 += -tr*(pmob[Gas]*dpmob[Water][Water]*pot[Water]
+ pmob[Gas]*dpmob[Oil][Water]*pot[Oil])/tmob;
f22 += tr*(-pmob[Gas]*dpmob[Oil][Gas]*pot[Oil]
+ (pmob[Water] + pmob[Oil])*dpmob[Gas][Gas]*pot[Gas]
- pmob[Gas]*dpmob[Water][Gas]*pot[Water])/tmob;
}
/* (from eq. 3, 4a-e, 5a-c)
F_i = 1/2 |f11_i + f22_i + \sqrt{G}|
G = (f11_i + f22_i)^2 - 4 det(F_i)
fXX_i = \sum_j fXX_ij (j runs over the neighbours)
det(F_i) = f11_i f22_i - f12_i f21_i
*/
detF = f11*f22 - f12*f21;
eqv_flux = 0.5*fabs(f11 + f22 + sqrt((f11 + f22)*(f11 + f22) - 4*detF));
/* delta_t < porevol/eqv_flux */
return porevol[c]/eqv_flux;
}
/* ---------------------------------------------------------------------- */
double
cfs_tpfa_impes_maxtime(grid_t *G,
struct compr_quantities *cq,
const double *trans,
const double *porevol,
struct cfs_tpfa_data *h,
const double *dpmobf,
const double *surf_dens,
const double *gravity)
/* ---------------------------------------------------------------------- */
{
int c;
double max_dt, cell_dt;
max_dt = 1e100;
for (c = 0; c < G->number_of_cells; ++c) {
cell_dt = cfs_tpfa_impes_maxtime_cell(c, G, cq, trans, porevol, h,
dpmobf, surf_dens, gravity);
if (cell_dt < max_dt) {
max_dt = cell_dt;
}
}
return max_dt;
}
/* ---------------------------------------------------------------------- */
void
cfs_tpfa_expl_mass_transport(grid_t *G,
well_t *W,
struct completion_data *wdata,
int np,
double dt,
const double *porevol,
struct cfs_tpfa_data *h,
double *surf_vol)
/* ---------------------------------------------------------------------- */
{
int c, i, f, c2, p, w;
double dp, dz, gsgn;
const double *masstrans_f, *gravtrans_f, *masstrans_p;
const double *cpress, *wpress;
/* Set up convenience pointers */
masstrans_f = h->pimpl->masstrans_f;
gravtrans_f = h->pimpl->gravtrans_f;
masstrans_p = h->pimpl->masstrans_p;
cpress = h->x;
wpress = h->x + G->number_of_cells;
/* Transport through interiour faces */
for (c = i = 0; c < G->number_of_cells; c++) {
for (; i < G->cell_facepos[c + 1]; i++) {
f = G->cell_faces[i];
if ((c2 = G->face_cells[2*f + 0]) == c) {
gsgn = 1.0;
c2 = G->face_cells[2*f + 1];
} else {
gsgn = -1.0;
}
if (c2 >= 0) {
dp = cpress[c] - cpress[c2];
for (p = 0; p < np; p++) {
dz = masstrans_f[f*np + p] * dp;
dz += gravtrans_f[f*np + p] * gsgn;
/* A positive dz means flow from the cell c into
the cell c2. */
surf_vol[c*np + p] -= dz * dt / porevol[c];
}
}
}
}
/* Transport through well perforations */
if (W != NULL) {
for (w = i = 0; w < W->number_of_wells; w++) {
for (; i < W->well_connpos[w + 1]; i++) {
c = W->well_cells[i];
/* Get difference between cell pressure and well bhp */
dp = wpress[w] - cpress[c];
for (p = 0; p < np; p++) {
dz = masstrans_p[i*np + p] * (dp + wdata->gpot[i*np + p]);
/* A positive dz means flow from the well perforation
i into the cell c */
surf_vol[c*np + p] += dz * dt / porevol[c];
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void
cfs_tpfa_destroy(struct cfs_tpfa_data *h)
/* ---------------------------------------------------------------------- */
{
if (h != NULL) {
csrmatrix_delete(h->A);
impl_deallocate (h->pimpl);
}
free(h);
}