mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 17:51:57 -06:00
59ca0b4424
Actually, it did not as it did set the define eith wrong or the wrong locations. This commit fixes this and finally makes AMG available.
499 lines
20 KiB
C++
499 lines
20 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2015 NTNU
|
|
Copyright 2015 Statoil AS
|
|
Copyright 2015 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
// Define making clear that the simulator supports AMG
|
|
#define FLOW_SUPPORT_AMG !defined(HAVE_UMFPACK)
|
|
|
|
#include <opm/autodiff/DuneMatrix.hpp>
|
|
#include <opm/autodiff/AdditionalObjectDeleter.hpp>
|
|
#include <opm/autodiff/CPRPreconditioner.hpp>
|
|
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
|
|
#include <opm/autodiff/NewtonIterationUtilities.hpp>
|
|
#include <opm/autodiff/ParallelRestrictedAdditiveSchwarz.hpp>
|
|
#include <opm/autodiff/ParallelOverlappingILU0.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
|
|
#include <opm/autodiff/ISTLSolver.hpp>
|
|
|
|
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
|
|
|
#if HAVE_UMFPACK
|
|
#include <Eigen/UmfPackSupport>
|
|
#else
|
|
#include <Eigen/SparseLU>
|
|
#endif
|
|
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
namespace detail {
|
|
/**
|
|
* Simple binary operator that always returns 0.1
|
|
* It is used to get the sparsity pattern for our
|
|
* interleaved system, and is marginally faster than using
|
|
* operator+=.
|
|
*/
|
|
template<typename Scalar> struct PointOneOp {
|
|
EIGEN_EMPTY_STRUCT_CTOR(PointOneOp)
|
|
Scalar operator()(const Scalar&, const Scalar&) const { return 0.1; }
|
|
};
|
|
}
|
|
|
|
|
|
/// This class solves the fully implicit black-oil system by
|
|
/// solving the reduced system (after eliminating well variables)
|
|
/// as a block-structured matrix (one block for all cell variables) for a fixed
|
|
/// number of cell variables np .
|
|
template <int np, class ScalarT = double >
|
|
class NewtonIterationBlackoilInterleavedImpl : public NewtonIterationBlackoilInterface
|
|
{
|
|
typedef ScalarT Scalar;
|
|
typedef Dune::FieldVector<Scalar, np > VectorBlockType;
|
|
|
|
typedef Dune::MatrixBlock<Scalar, np, np > MatrixBlockType;
|
|
|
|
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
|
|
typedef Dune::BlockVector<VectorBlockType> Vector;
|
|
|
|
typedef Opm::ISTLSolver< MatrixBlockType, VectorBlockType > ISTLSolverType;
|
|
|
|
public:
|
|
typedef NewtonIterationBlackoilInterface :: SolutionVector SolutionVector;
|
|
/// Construct a system solver.
|
|
/// \param[in] param parameters controlling the behaviour of the linear solvers
|
|
/// \param[in] parallelInformation In the case of a parallel run
|
|
/// with dune-istl the information about the parallelization.
|
|
NewtonIterationBlackoilInterleavedImpl(const NewtonIterationBlackoilInterleavedParameters& param,
|
|
const boost::any& parallelInformation_arg=boost::any())
|
|
: istlSolver_( param, parallelInformation_arg ),
|
|
parameters_( param )
|
|
{
|
|
}
|
|
|
|
/// Solve the system of linear equations Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] residual residual object containing A and b.
|
|
/// \return the solution x
|
|
|
|
/// \copydoc NewtonIterationBlackoilInterface::iterations
|
|
int iterations () const { return istlSolver_.iterations(); }
|
|
|
|
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
|
|
const boost::any& parallelInformation() const { return istlSolver_.parallelInformation(); }
|
|
|
|
public:
|
|
void formInterleavedSystem(const std::vector<LinearisedBlackoilResidual::ADB>& eqs,
|
|
Mat& istlA) const
|
|
{
|
|
assert( np == int(eqs.size()) );
|
|
// Find sparsity structure as union of basic block sparsity structures,
|
|
// corresponding to the jacobians with respect to pressure.
|
|
// Use our custom PointOneOp to get to the union structure.
|
|
// As default we only iterate over the pressure derivatives.
|
|
Eigen::SparseMatrix<double, Eigen::ColMajor> col_major = eqs[0].derivative()[0].getSparse();
|
|
detail::PointOneOp<double> point_one;
|
|
for (int phase = 1; phase < np; ++phase) {
|
|
const AutoDiffMatrix::SparseRep& mat = eqs[phase].derivative()[0].getSparse();
|
|
col_major = col_major.binaryExpr(mat, point_one);
|
|
}
|
|
// For some cases (for instance involving Solvent flow) the reasoning for only adding
|
|
// the pressure derivatives fails. As getting the sparsity pattern is non-trivial, in terms
|
|
// of work, the full sparsity pattern is only added when required.
|
|
if (parameters_.require_full_sparsity_pattern_) {
|
|
for (int p1 = 0; p1 < np; ++p1) {
|
|
for (int p2 = 1; p2 < np; ++p2) { // pressure is already added
|
|
const AutoDiffMatrix::SparseRep& mat = eqs[p1].derivative()[p2].getSparse();
|
|
col_major = col_major.binaryExpr(mat, point_one);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Automatically convert the column major structure to a row-major structure
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor> row_major = col_major;
|
|
|
|
const int size = row_major.rows();
|
|
assert(size == row_major.cols());
|
|
|
|
{
|
|
// Create ISTL matrix with interleaved rows and columns (block structured).
|
|
istlA.setSize(row_major.rows(), row_major.cols(), row_major.nonZeros());
|
|
istlA.setBuildMode(Mat::row_wise);
|
|
const int* ia = row_major.outerIndexPtr();
|
|
const int* ja = row_major.innerIndexPtr();
|
|
const typename Mat::CreateIterator endrow = istlA.createend();
|
|
for (typename Mat::CreateIterator row = istlA.createbegin(); row != endrow; ++row) {
|
|
const int ri = row.index();
|
|
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
|
|
row.insert(ja[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
// not neeeded since MatrixBlock initially zeros all elements during construction
|
|
// Set all blocks to zero.
|
|
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
|
|
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
|
|
*col = 0.0;
|
|
}
|
|
}
|
|
*/
|
|
|
|
/**
|
|
* Go through all jacobians, and insert in correct spot
|
|
*
|
|
* The straight forward way to do this would be to run through each
|
|
* element in the output matrix, and set all block entries by gathering
|
|
* from all "input matrices" (derivatives).
|
|
*
|
|
* A faster alternative is to instead run through each "input matrix" and
|
|
* insert its elements in the correct spot in the output matrix.
|
|
*
|
|
*/
|
|
for (int p1 = 0; p1 < np; ++p1) {
|
|
for (int p2 = 0; p2 < np; ++p2) {
|
|
// Note that that since these are CSC and not CSR matrices,
|
|
// ja contains row numbers instead of column numbers.
|
|
const AutoDiffMatrix::SparseRep& s = eqs[p1].derivative()[p2].getSparse();
|
|
const int* ia = s.outerIndexPtr();
|
|
const int* ja = s.innerIndexPtr();
|
|
const double* sa = s.valuePtr();
|
|
for (int col = 0; col < size; ++col) {
|
|
for (int elem_ix = ia[col]; elem_ix < ia[col + 1]; ++elem_ix) {
|
|
const int row = ja[elem_ix];
|
|
istlA[row][col][p1][p2] = sa[elem_ix];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// Solve the linear system Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] residual residual object containing A and b.
|
|
/// \return the solution x
|
|
SolutionVector computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
|
|
{
|
|
typedef LinearisedBlackoilResidual::ADB ADB;
|
|
typedef ADB::V V;
|
|
|
|
// Build the vector of equations.
|
|
//const int np = residual.material_balance_eq.size();
|
|
assert( np == int(residual.material_balance_eq.size()) );
|
|
std::vector<ADB> eqs;
|
|
eqs.reserve(np + 2);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
eqs.push_back(residual.material_balance_eq[phase]);
|
|
}
|
|
|
|
// check if wells are present
|
|
const bool hasWells = residual.well_flux_eq.size() > 0 ;
|
|
std::vector<ADB> elim_eqs;
|
|
if( hasWells )
|
|
{
|
|
eqs.push_back(residual.well_flux_eq);
|
|
eqs.push_back(residual.well_eq);
|
|
|
|
// Eliminate the well-related unknowns, and corresponding equations.
|
|
elim_eqs.reserve(2);
|
|
elim_eqs.push_back(eqs[np]);
|
|
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
|
|
elim_eqs.push_back(eqs[np]);
|
|
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
|
|
assert(int(eqs.size()) == np);
|
|
}
|
|
|
|
// Scale material balance equations.
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
eqs[phase] = eqs[phase] * residual.matbalscale[phase];
|
|
}
|
|
|
|
// calculating the size for b
|
|
int size_b = 0;
|
|
for (int elem = 0; elem < np; ++elem) {
|
|
const int loc_size = eqs[elem].size();
|
|
size_b += loc_size;
|
|
}
|
|
|
|
V b(size_b);
|
|
|
|
int pos = 0;
|
|
for (int elem = 0; elem < np; ++elem) {
|
|
const int loc_size = eqs[elem].size();
|
|
b.segment(pos, loc_size) = eqs[elem].value();
|
|
pos += loc_size;
|
|
}
|
|
assert(pos == size_b);
|
|
|
|
// Create ISTL matrix with interleaved rows and columns (block structured).
|
|
Mat istlA;
|
|
formInterleavedSystem(eqs, istlA);
|
|
|
|
// Solve reduced system.
|
|
SolutionVector dx(SolutionVector::Zero(b.size()));
|
|
|
|
// Right hand side.
|
|
const int size = istlA.N();
|
|
Vector istlb(size);
|
|
for (int i = 0; i < size; ++i) {
|
|
for( int p = 0, idx = i; p<np; ++p, idx += size ) {
|
|
istlb[i][p] = b(idx);
|
|
}
|
|
}
|
|
|
|
// System solution
|
|
Vector x(istlA.M());
|
|
x = 0.0;
|
|
|
|
// solve linear system using ISTL methods
|
|
istlSolver_.solve( istlA, x, istlb );
|
|
|
|
// Copy solver output to dx.
|
|
for (int i = 0; i < size; ++i) {
|
|
for( int p=0, idx = i; p<np; ++p, idx += size ) {
|
|
dx(idx) = x[i][p];
|
|
}
|
|
}
|
|
|
|
if ( hasWells ) {
|
|
// Compute full solution using the eliminated equations.
|
|
// Recovery in inverse order of elimination.
|
|
dx = recoverVariable(elim_eqs[1], dx, np);
|
|
dx = recoverVariable(elim_eqs[0], dx, np);
|
|
}
|
|
return dx;
|
|
}
|
|
|
|
protected:
|
|
ISTLSolverType istlSolver_;
|
|
NewtonIterationBlackoilInterleavedParameters parameters_;
|
|
}; // end NewtonIterationBlackoilInterleavedImpl
|
|
|
|
|
|
|
|
/// Construct a system solver.
|
|
NewtonIterationBlackoilInterleaved::NewtonIterationBlackoilInterleaved(const ParameterGroup& param,
|
|
const boost::any& parallelInformation_arg)
|
|
: newtonIncrementDoublePrecision_(),
|
|
newtonIncrementSinglePrecision_(),
|
|
parameters_( param ),
|
|
parallelInformation_(parallelInformation_arg),
|
|
iterations_( 0 )
|
|
{
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
template< int NP, class Scalar >
|
|
struct NewtonIncrement
|
|
{
|
|
template <class NewtonIncVector>
|
|
static const NewtonIterationBlackoilInterface&
|
|
get( NewtonIncVector& newtonIncrements,
|
|
const NewtonIterationBlackoilInterleavedParameters& param,
|
|
const boost::any& parallelInformation,
|
|
const int np )
|
|
{
|
|
if( np == NP )
|
|
{
|
|
assert( np < int(newtonIncrements.size()) );
|
|
// create NewtonIncrement with fixed np
|
|
if( ! newtonIncrements[ NP ] )
|
|
newtonIncrements[ NP ].reset( new NewtonIterationBlackoilInterleavedImpl< NP, Scalar >( param, parallelInformation ) );
|
|
return *(newtonIncrements[ NP ]);
|
|
}
|
|
else
|
|
{
|
|
return NewtonIncrement< NP-1, Scalar >::get(newtonIncrements, param, parallelInformation, np );
|
|
}
|
|
}
|
|
};
|
|
|
|
template<class Scalar>
|
|
struct NewtonIncrement< 0, Scalar >
|
|
{
|
|
template <class NewtonIncVector>
|
|
static const NewtonIterationBlackoilInterface&
|
|
get( NewtonIncVector&,
|
|
const NewtonIterationBlackoilInterleavedParameters&,
|
|
const boost::any&,
|
|
const int np )
|
|
{
|
|
OPM_THROW(std::runtime_error,"NewtonIncrement::get: number of variables not supported yet. Adjust maxNumberEquations appropriately to cover np = " << np);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
std::pair<NewtonIterationBlackoilInterleaved::SolutionVector, Dune::InverseOperatorResult>
|
|
computePressureIncrement(const LinearisedBlackoilResidual& residual)
|
|
{
|
|
typedef LinearisedBlackoilResidual::ADB ADB;
|
|
|
|
// Build the vector of equations (should be just a single material balance equation
|
|
// in which the pressure equation is stored).
|
|
const int np = residual.material_balance_eq.size();
|
|
assert(np == 1);
|
|
std::vector<ADB> eqs;
|
|
eqs.reserve(np + 2);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
eqs.push_back(residual.material_balance_eq[phase]);
|
|
}
|
|
|
|
// Check if wells are present.
|
|
const bool hasWells = residual.well_flux_eq.size() > 0 ;
|
|
std::vector<ADB> elim_eqs;
|
|
if (hasWells) {
|
|
// Eliminate the well-related unknowns, and corresponding equations.
|
|
eqs.push_back(residual.well_flux_eq);
|
|
eqs.push_back(residual.well_eq);
|
|
elim_eqs.reserve(2);
|
|
elim_eqs.push_back(eqs[np]);
|
|
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
|
|
elim_eqs.push_back(eqs[np]);
|
|
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
|
|
assert(int(eqs.size()) == np);
|
|
}
|
|
|
|
// Solve the linearised oil equation.
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor> eigenA = eqs[0].derivative()[0].getSparse();
|
|
DuneMatrix opA(eigenA);
|
|
const int size = eqs[0].size();
|
|
typedef Dune::BlockVector<Dune::FieldVector<double, 1> > Vector1;
|
|
Vector1 x;
|
|
x.resize(size);
|
|
x = 0.0;
|
|
Vector1 b;
|
|
b.resize(size);
|
|
b = 0.0;
|
|
std::copy_n(eqs[0].value().data(), size, b.begin());
|
|
|
|
// Solve with AMG solver.
|
|
typedef Dune::BCRSMatrix<Dune::FieldMatrix<double, 1, 1> > Mat;
|
|
typedef Dune::MatrixAdapter<Mat, Vector1, Vector1> Operator;
|
|
Operator sOpA(opA);
|
|
|
|
typedef Dune::Amg::SequentialInformation ParallelInformation;
|
|
typedef Dune::SeqILU0<Mat,Vector1,Vector1> EllipticPreconditioner;
|
|
typedef EllipticPreconditioner Smoother;
|
|
typedef Dune::Amg::AMG<Operator, Vector1, Smoother, ParallelInformation> AMG;
|
|
typedef Dune::Amg::FirstDiagonal CouplingMetric;
|
|
typedef Dune::Amg::SymmetricCriterion<Mat, CouplingMetric> CritBase;
|
|
typedef Dune::Amg::CoarsenCriterion<CritBase> Criterion;
|
|
|
|
// TODO: revise choice of parameters
|
|
const int coarsenTarget = 1200;
|
|
Criterion criterion(15, coarsenTarget);
|
|
criterion.setDebugLevel(0); // no debug information, 1 for printing hierarchy information
|
|
criterion.setDefaultValuesIsotropic(2);
|
|
criterion.setNoPostSmoothSteps(1);
|
|
criterion.setNoPreSmoothSteps(1);
|
|
|
|
// for DUNE 2.2 we also need to pass the smoother args
|
|
typedef typename AMG::Smoother Smoother;
|
|
typedef typename Dune::Amg::SmootherTraits<Smoother>::Arguments SmootherArgs;
|
|
SmootherArgs smootherArgs;
|
|
smootherArgs.iterations = 1;
|
|
smootherArgs.relaxationFactor = 1.0;
|
|
|
|
AMG precond(sOpA, criterion, smootherArgs);
|
|
|
|
const int verbosity = 0;
|
|
const int maxit = 30;
|
|
const double tolerance = 1e-5;
|
|
|
|
// Construct linear solver.
|
|
Dune::BiCGSTABSolver<Vector1> linsolve(sOpA, precond, tolerance, maxit, verbosity);
|
|
|
|
// Solve system.
|
|
Dune::InverseOperatorResult result;
|
|
linsolve.apply(x, b, result);
|
|
|
|
// Check for failure of linear solver.
|
|
if (!result.converged) {
|
|
const std::string msg("Convergence failure for linear solver in computePressureIncrement().");
|
|
OpmLog::problem(msg);
|
|
OPM_THROW_NOLOG(LinearSolverProblem, msg);
|
|
}
|
|
|
|
// Copy solver output to dx.
|
|
NewtonIterationBlackoilInterleaved::SolutionVector dx(size);
|
|
for (int i = 0; i < size; ++i) {
|
|
dx(i) = x[i];
|
|
}
|
|
|
|
if (hasWells) {
|
|
// Compute full solution using the eliminated equations.
|
|
// Recovery in inverse order of elimination.
|
|
dx = recoverVariable(elim_eqs[1], dx, np);
|
|
dx = recoverVariable(elim_eqs[0], dx, np);
|
|
}
|
|
return std::make_pair(dx, result);
|
|
}
|
|
|
|
|
|
} // end namespace detail
|
|
|
|
|
|
NewtonIterationBlackoilInterleaved::SolutionVector
|
|
NewtonIterationBlackoilInterleaved::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
|
|
{
|
|
// get np and call appropriate template method
|
|
const int np = residual.material_balance_eq.size();
|
|
if (np == 1) {
|
|
auto result = detail::computePressureIncrement(residual);
|
|
iterations_ = result.second.iterations;
|
|
return result.first;
|
|
}
|
|
|
|
const NewtonIterationBlackoilInterface& newtonIncrement = residual.singlePrecision ?
|
|
detail::NewtonIncrement< maxNumberEquations_, float > :: get( newtonIncrementSinglePrecision_, parameters_, parallelInformation_, np ) :
|
|
detail::NewtonIncrement< maxNumberEquations_, double > :: get( newtonIncrementDoublePrecision_, parameters_, parallelInformation_, np );
|
|
|
|
// compute newton increment
|
|
SolutionVector dx = newtonIncrement.computeNewtonIncrement( residual );
|
|
// get number of linear iterations
|
|
iterations_ = newtonIncrement.iterations();
|
|
return dx;
|
|
}
|
|
|
|
const boost::any& NewtonIterationBlackoilInterleaved::parallelInformation() const
|
|
{
|
|
return parallelInformation_;
|
|
}
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|