opm-simulators/opm/simulators/aquifers/AquiferCarterTracy.hpp
2020-12-11 12:48:01 +01:00

272 lines
11 KiB
C++

/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
#define OPM_AQUIFERCT_HEADER_INCLUDED
#include <opm/simulators/aquifers/AquiferInterface.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <exception>
#include <stdexcept>
namespace Opm
{
template <typename TypeTag>
class AquiferCarterTracy : public AquiferInterface<TypeTag>
{
public:
typedef AquiferInterface<TypeTag> Base;
using typename Base::BlackoilIndices;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using typename Base::ElementMapper;
using Base::waterCompIdx;
using Base::waterPhaseIdx;
AquiferCarterTracy(const std::vector<Aquancon::AquancCell>& connections,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebosSimulator,
const AquiferCT::AQUCT_data& aquct_data)
: Base(aquct_data.aquiferID, connections, cartesian_to_compressed, ebosSimulator)
, aquct_data_(aquct_data)
{
}
void endTimeStep() override
{
for (const auto& q : this->Qai_) {
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
}
}
Opm::data::AquiferData aquiferData() const
{
data::AquiferData data;
data.aquiferID = this->aquiferID;
// TODO: not sure how to get this pressure value yet
data.pressure = this->pa0_;
data.fluxRate = 0.;
for (const auto& q : this->Qai_) {
data.fluxRate += q.value();
}
data.volume = this->W_flux_.value();
data.initPressure = this->pa0_;
data.type = Opm::data::AquiferType::CarterTracey;
return data;
}
protected:
// Variables constants
const AquiferCT::AQUCT_data aquct_data_;
Scalar beta_; // Influx constant
// TODO: it is possible it should be a AD variable
Scalar mu_w_; // water viscosity
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
inline void initializeConnections() override
{
const auto& eclState = this->ebos_simulator_.vanguard().eclState();
const auto& grid = eclState.getInputGrid();
// We hack the cell depth values for now. We can actually get it from elementcontext pos
this->cell_depth_.resize(this->size(), this->aquiferDepth());
this->alphai_.resize(this->size(), 1.0);
this->faceArea_connected_.resize(this->size(), 0.0);
// Translate the C face tag into the enum used by opm-parser's TransMult class
Opm::FaceDir::DirEnum faceDirection;
// denom_face_areas is the sum of the areas connected to an aquifer
Scalar denom_face_areas = 0.;
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
for (size_t idx = 0; idx < this->size(); ++idx) {
const auto global_index = this->connections_[idx].global_index;
const int cell_index = this->cartesian_to_compressed_.at(global_index);
this->cellToConnectionIdx_[cell_index] = idx;
const auto cellCenter = grid.getCellCenter(global_index);
this->cell_depth_.at(idx) = cellCenter[2];
}
// get default areas for all intersections
const auto& gridView = this->ebos_simulator_.vanguard().gridView();
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
unsigned cell_index = elemMapper.index(elem);
int idx = this->cellToConnectionIdx_[cell_index];
// only deal with connections given by the aquifer
if( idx < 0)
continue;
auto isIt = gridView.ibegin(elem);
const auto& isEndIt = gridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
// only deal with grid boundaries
if (!intersection.boundary())
continue;
int insideFaceIdx = intersection.indexInInside();
switch (insideFaceIdx) {
case 0:
faceDirection = Opm::FaceDir::XMinus;
break;
case 1:
faceDirection = Opm::FaceDir::XPlus;
break;
case 2:
faceDirection = Opm::FaceDir::YMinus;
break;
case 3:
faceDirection = Opm::FaceDir::YPlus;
break;
case 4:
faceDirection = Opm::FaceDir::ZMinus;
break;
case 5:
faceDirection = Opm::FaceDir::ZPlus;
break;
default:
OPM_THROW(Opm::NumericalIssue,
"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
}
if (faceDirection == this->connections_[idx].face_dir) {
this->faceArea_connected_[idx] = this->getFaceArea(intersection, idx);
denom_face_areas += (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx));
}
}
}
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
for (size_t idx = 0; idx < this->size(); ++idx) {
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
? // Prevent no connection NaNs due to division by zero
0.
: (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx)) / denom_face_areas;
}
}
void assignRestartData(const data::AquiferData& /* xaq */) override
{
throw std::runtime_error {"Restart-based initialization not currently supported "
"for Carter-Tracey analytic aquifers"};
}
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
{
// We use the opm-common numeric linear interpolator
pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td);
pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td);
}
inline Scalar dpai(int idx)
{
Scalar dp = this->pa0_
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth())
- this->pressure_previous_.at(idx);
return dp;
}
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const Simulator& simulator)
{
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_;
const Scalar td = simulator.time() / this->Tc_;
Scalar PItdprime = 0.;
Scalar PItd = 0.;
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
a = 1.0 / this->Tc_ * ((beta_ * dpai(idx)) - (this->W_flux_.value() * PItdprime)) / (PItd - td * PItdprime);
b = beta_ / (this->Tc_ * (PItd - td * PItdprime));
}
// This function implements Eq 5.7 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
Scalar a, b;
calculateEqnConstants(a, b, idx, simulator);
this->Qai_.at(idx)
= this->alphai_.at(idx) * (a - b * (this->pressure_current_.at(idx) - this->pressure_previous_.at(idx)));
}
inline void calculateAquiferConstants() override
{
// We calculate the influx constant
beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t
* aquct_data_.r_o * aquct_data_.r_o;
// We calculate the time constant
this->Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
/ (aquct_data_.k_a * aquct_data_.c1);
}
inline void calculateAquiferCondition() override
{
int pvttableIdx = aquct_data_.pvttableID - 1;
this->rhow_.resize(this->size(), 0.);
if (!aquct_data_.p0.first) {
this->pa0_ = this->calculateReservoirEquilibrium();
} else {
this->pa0_ = aquct_data_.p0.second;
}
// use the thermodynamic state of the first active cell as a
// reference. there might be better ways to do this...
ElementContext elemCtx(this->ebos_simulator_);
auto elemIt = this->ebos_simulator_.gridView().template begin</*codim=*/0>();
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
// Initialize a FluidState object first
FluidState fs_aquifer;
// We use the temperature of the first cell connected to the aquifer
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
fs_aquifer.assign(iq0.fluidState());
Eval temperature_aq, pa0_mean, saltConcentration_aq;
temperature_aq = fs_aquifer.temperature(0);
saltConcentration_aq = fs_aquifer.saltConcentration();
pa0_mean = this->pa0_;
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean, saltConcentration_aq);
mu_w_ = mu_w_aquifer.value();
}
virtual Scalar aquiferDepth() const override
{
return aquct_data_.d0;
}
}; // class AquiferCarterTracy
} // namespace Opm
#endif