opm-simulators/examples/problems/stokes2ctestproblem.hh
Andreas Lauser 99304f9689 change the order of OPM_UNUSED and variable name
it seems like some compilers (GCC 4.9.2?) are picky about this and
require

```c++
TypeName VariableName __attribute__ ((__unused__))
```
2017-01-17 13:28:56 +01:00

320 lines
9.6 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Ewoms::Stokes2cTestProblem
*/
#ifndef EWOMS_STOKES_2C_TEST_PROBLEM_HH
#define EWOMS_STOKES_2C_TEST_PROBLEM_HH
#include <ewoms/models/stokes/stokesmodel.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
#include <opm/common/Unused.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
template <class TypeTag>
class Stokes2cTestProblem;
}
namespace Ewoms {
//////////
// Specify the properties for the stokes2c problem
//////////
namespace Properties {
NEW_TYPE_TAG(Stokes2cTestProblem, INHERITS_FROM(StokesModel));
// Set the grid type
SET_TYPE_PROP(Stokes2cTestProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(Stokes2cTestProblem, Problem, Ewoms::Stokes2cTestProblem<TypeTag>);
//! Select the fluid system
SET_TYPE_PROP(Stokes2cTestProblem, FluidSystem,
Opm::FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>);
//! Select the phase to be considered
SET_INT_PROP(Stokes2cTestProblem, StokesPhaseIndex,
GET_PROP_TYPE(TypeTag, FluidSystem)::gasPhaseIdx);
// Disable gravity
SET_BOOL_PROP(Stokes2cTestProblem, EnableGravity, false);
// Enable constraints
SET_BOOL_PROP(Stokes2cTestProblem, EnableConstraints, true);
// Default simulation end time [s]
SET_SCALAR_PROP(Stokes2cTestProblem, EndTime, 2.0);
// Default initial time step size [s]
SET_SCALAR_PROP(Stokes2cTestProblem, InitialTimeStepSize, 0.1);
// Default grid file to load
SET_STRING_PROP(Stokes2cTestProblem, GridFile, "data/test_stokes2c.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup Stokes2cModel
* \ingroup TestProblems
*
* \brief Stokes transport problem with humid air flowing from the
* left to the right.
*
* The domain is sized 1m times 1m. The boundaries are specified using
* constraints, with finite volumes on the left side of the domain
* exhibiting slightly higher humitiy than the ones on the right.
*/
template <class TypeTag>
class Stokes2cTestProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
enum { dimWorld = GridView::dimensionworld };
enum { numComponents = FluidSystem::numComponents };
enum {
// copy some indices for convenience
conti0EqIdx = Indices::conti0EqIdx,
momentum0EqIdx = Indices::momentum0EqIdx,
velocity0Idx = Indices::velocity0Idx,
moleFrac1Idx = Indices::moleFrac1Idx,
pressureIdx = Indices::pressureIdx,
H2OIdx = FluidSystem::H2OIdx,
AirIdx = FluidSystem::AirIdx
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
Stokes2cTestProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 1e-6;
// initialize the tables of the fluid system
FluidSystem::init();
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "stokes2ctest"; }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \brief StokesProblem::temperature
*
* This problem assumes a temperature of 10 degrees Celsius.
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 273.15 + 10; /* -> 10 deg C */ }
// \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* This problem uses an out-flow boundary on the lower edge of the
* domain, no-flow on the left and right edges and constrains the
* upper edge.
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onLowerBoundary_(pos))
values.setOutFlow(context, spaceIdx, timeIdx);
else if (onUpperBoundary_(pos))
// upper boundary is constraint!
values = 0.0;
else
// left and right boundaries
values.setNoFlow(context, spaceIdx, timeIdx);
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*
* For this method a parabolic velocity profile from left to
* right, atmospheric pressure and a mole fraction of water of
* 0.5% is set.
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
values = 0.0;
// parabolic profile
const Scalar v1 = 1.0;
values[velocity0Idx + 1] =
- v1
* (globalPos[0] - this->boundingBoxMin()[0])
* (this->boundingBoxMax()[0] - globalPos[0])
/ (0.25
* (this->boundingBoxMax()[0] - this->boundingBoxMin()[0])
* (this->boundingBoxMax()[0] - this->boundingBoxMin()[0]));
Scalar moleFrac[numComponents];
if (onUpperBoundary_(globalPos))
moleFrac[H2OIdx] = 0.005;
else
moleFrac[H2OIdx] = 0.007;
moleFrac[AirIdx] = 1.0 - moleFrac[H2OIdx];
values[pressureIdx] = 1e5;
values[velocity0Idx + 0] = 0.0;
values[moleFrac1Idx] = moleFrac[1];
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all conserved quantities
* is 0 everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ rate = Scalar(0.0); }
/*!
* \copydoc FvBaseProblem::constraints
*
* In this problem, the method sets the domain's lower edge to
* initial conditions.
*/
template <class Context>
void constraints(Constraints& constraints,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos)) {
constraints.setActive(true);
initial(constraints, context, spaceIdx, timeIdx);
}
}
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& globalPos) const
{ return globalPos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& globalPos) const
{ return globalPos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& globalPos) const
{ return globalPos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& globalPos) const
{ return globalPos[1] > this->boundingBoxMax()[1] - eps_; }
Scalar eps_;
};
} // namespace Ewoms
#endif