Files
opm-simulators/opm/material/fluidstates/PressureOverlayFluidState.hpp
Andreas Lauser 8cdd2923c9 update the in-file copyright holder statements
this patch is quite large as there were various bug fixes to the
script which generates these statements
2013-12-02 17:26:34 +01:00

213 lines
6.2 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2011-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
* \copydoc Opm::PressureOverlayFluidState
*/
#ifndef OPM_PRESSURE_OVERLAY_FLUID_STATE_HPP
#define OPM_PRESSURE_OVERLAY_FLUID_STATE_HPP
#include <opm/material/Valgrind.hpp>
#include <array>
namespace Opm {
/*!
* \brief This is a fluid state which allows to set the fluid
pressures and takes all other quantities from an other
fluid state.
*/
template <class Scalar, class FluidState>
class PressureOverlayFluidState
{
public:
enum { numPhases = FluidState::numPhases };
enum { numComponents = FluidState::numComponents };
/*!
* \brief Constructor
*
* The overlay fluid state copies the pressures from the argument,
* so it initially behaves exactly like the underlying fluid
* state.
*/
PressureOverlayFluidState(const FluidState &fs)
: fs_(&fs)
{
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
pressure_[phaseIdx] = fs.pressure(phaseIdx);
}
// copy constructor
PressureOverlayFluidState(const PressureOverlayFluidState &fs)
: fs_(fs.fs_)
, pressure_(fs.pressure_)
{
}
// assignment operator
PressureOverlayFluidState &operator=(const PressureOverlayFluidState &fs)
{
fs_ = fs.fs_;
pressure_ = fs.pressure_;
return *this;
}
/*****************************************************
* Generic access to fluid properties (No assumptions
* on thermodynamic equilibrium required)
*****************************************************/
/*!
* \brief Returns the saturation of a phase []
*/
Scalar saturation(int phaseIdx) const
{ return fs_->saturation(phaseIdx); }
/*!
* \brief The mole fraction of a component in a phase []
*/
Scalar moleFraction(int phaseIdx, int compIdx) const
{ return fs_->moleFraction(phaseIdx, compIdx); }
/*!
* \brief The mass fraction of a component in a phase []
*/
Scalar massFraction(int phaseIdx, int compIdx) const
{ return fs_->massFraction(phaseIdx, compIdx); }
/*!
* \brief The average molar mass of a fluid phase [kg/mol]
*
* The average mass is the mean molar mass of a molecule of the
* fluid at current composition. It is defined as the sum of the
* component's molar masses weighted by the current mole fraction:
* \f[ \bar M_\alpha = \sum_\kappa M^\kappa x_\alpha^\kappa \f]
*/
Scalar averageMolarMass(int phaseIdx) const
{ return fs_->averageMolarMass(phaseIdx); }
/*!
* \brief The molar concentration of a component in a phase [mol/m^3]
*
* This quantity is usually called "molar concentration" or just
* "concentration", but there are many other (though less common)
* measures for concentration.
*
* http://en.wikipedia.org/wiki/Concentration
*/
Scalar molarity(int phaseIdx, int compIdx) const
{ return fs_->molarity(phaseIdx, compIdx); }
/*!
* \brief The fugacity of a component in a phase [Pa]
*/
Scalar fugacity(int phaseIdx, int compIdx) const
{ return fs_->fugacity(phaseIdx, compIdx); }
/*!
* \brief The fugacity coefficient of a component in a phase [-]
*/
Scalar fugacityCoefficient(int phaseIdx, int compIdx) const
{ return fs_->fugacityCoefficient(phaseIdx, compIdx); }
/*!
* \brief The molar volume of a fluid phase [m^3/mol]
*/
Scalar molarVolume(int phaseIdx) const
{ return fs_->molarVolume(phaseIdx); }
/*!
* \brief The mass density of a fluid phase [kg/m^3]
*/
Scalar density(int phaseIdx) const
{ return fs_->density(phaseIdx); }
/*!
* \brief The molar density of a fluid phase [mol/m^3]
*/
Scalar molarDensity(int phaseIdx) const
{ return fs_->molarDensity(phaseIdx); }
/*!
* \brief The temperature of a fluid phase [K]
*/
Scalar temperature(int phaseIdx) const
{ return fs_->temperature(phaseIdx); }
/*!
* \brief The pressure of a fluid phase [Pa]
*/
Scalar pressure(int phaseIdx) const
{ return pressure_[phaseIdx]; }
/*!
* \brief The specific enthalpy of a fluid phase [J/kg]
*/
Scalar enthalpy(int phaseIdx) const
{ return fs_->enthalpy(phaseIdx); }
/*!
* \brief The specific internal energy of a fluid phase [J/kg]
*/
Scalar internalEnergy(int phaseIdx) const
{ return fs_->internalEnergy(phaseIdx); }
/*!
* \brief The dynamic viscosity of a fluid phase [Pa s]
*/
Scalar viscosity(int phaseIdx) const
{ return fs_->viscosity(phaseIdx); }
/*****************************************************
* Setter methods. Note that these are not part of the
* generic FluidState interface but specific for each
* implementation...
*****************************************************/
/*!
* \brief Set the pressure [Pa] of a fluid phase
*/
void setPressure(int phaseIdx, Scalar value)
{ pressure_[phaseIdx] = value; }
/*!
* \brief Make sure that all attributes are defined.
*
* This method does not do anything if the program is not run
* under valgrind. If it is, then valgrind will print an error
* message if some attributes of the object have not been properly
* defined.
*/
void checkDefined() const
{
Valgrind::CheckDefined(pressure_);
}
protected:
const FluidState *fs_;
std::array<Scalar, numPhases> pressure_;
};
} // namespace Opm
#endif