opm-simulators/opm/simulators/aquifers/AquiferNumerical.hpp
Kai Bao 8d7c3aa0ca getting numerical aquifer ready for summary output
it works well for some cases, while not the other one. More
investigation is ongoing.
2021-02-22 23:15:26 +01:00

210 lines
7.8 KiB
C++

/*
Copyright (C) 2020 Equinor ASA
Copyright (C) 2020 SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
#define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED
#include <opm/output/data/Aquifer.hpp>
#include <opm/parser/eclipse/EclipseState/NumericalAquifer.hpp>
namespace Opm
{
template <typename TypeTag>
class AquiferNumerical
{
public:
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
enum { dimWorld = GridView::dimensionworld };
static const auto waterPhaseIdx = FluidSystem::waterPhaseIdx;
static const int numEq = BlackoilIndices::numEq;
using Eval = DenseAd::Evaluation<double, numEq>;
using Toolbox = Opm::MathToolbox<Eval>;
// Constructor
AquiferNumerical(const SingleNumericalAquifer& aquifer,
const std::unordered_map<int, int>& cartesian_to_compressed,
const Simulator& ebos_simulator)
: aquifer_(aquifer)
, ebos_simulator_(ebos_simulator)
, flux_rate_(0.)
, cumulative_flux_(0.)
{
this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
const auto& cells = this->aquifer_.cells();
// TODO: here, the parallisam is obviously ignored
for (size_t idx = 0; idx < cells.size(); ++idx) {
const int global_idx = cells[idx].global_index;
const int cell_idx = cartesian_to_compressed.at(global_idx);
this->cell_to_aquifer_cell_idx_[cell_idx] = idx;
}
}
void initFromRestart(const std::vector<data::AquiferData>& aquiferSoln)
{
// NOT handling Restart for now
}
void endTimeStep()
{
this->pressure_ = this->calculateAquiferPressure();
this->flux_rate_ = this->calculateAquiferFluxRate();
this->cumulative_flux_ += this->flux_rate_ * this->ebos_simulator_.timeStepSize();
}
Opm::data::AquiferData aquiferData() const
{
data::AquiferData data;
data.aquiferID = this->aquifer_.id();
data.initPressure = this->init_pressure_;
data.pressure = this->pressure_;
data.fluxRate = this->flux_rate_;
data.volume = this->cumulative_flux_;
data.type = Opm::data::AquiferType::Numerical;
return data;
}
void initialSolutionApplied()
{
this->init_pressure_ = this->calculateAquiferPressure();
this->pressure_ = this->init_pressure_;
this->flux_rate_ = 0.;
this->cumulative_flux_ = 0.;
}
private:
const Opm::SingleNumericalAquifer& aquifer_;
const Simulator& ebos_simulator_;
double flux_rate_; // aquifer influx rate
double cumulative_flux_; // cumulative aquifer influx
double init_pressure_;
double pressure_; // aquifer pressure
// TODO: maybe unordered_map can also do the work to save memory?
std::vector<int> cell_to_aquifer_cell_idx_;
double calculateAquiferPressure() const
{
double sum_pv_pressure = 0.;
double sum_pv = 0.;
ElementContext elem_ctx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
elem_ctx.updatePrimaryStencil(elem);
const size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
if (idx < 0) {
continue;
}
elem_ctx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elem_ctx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
const double water_pressure_reservoir = fs.pressure(waterPhaseIdx).value();
const auto& pvs = this->ebos_simulator_.vanguard().eclState().fieldProps().porv(true);
// TODO: should get this PV, how to consider the rock compressiblity
const double pv = pvs[cell_index];
sum_pv_pressure += pv * water_pressure_reservoir;
sum_pv += pv;
}
assert(sum_pv > 0.);
return sum_pv_pressure/ sum_pv;
}
double calculateAquiferFluxRate() const
{
double aquifer_flux = 0.;
ElementContext elem_ctx(this->ebos_simulator_);
const auto& gridView = this->ebos_simulator_.gridView();
auto elemIt = gridView.template begin</*codim=*/0>();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto &elem = *elemIt;
// elem_ctx.updatePrimaryStencil(elem);
elem_ctx.updateStencil(elem);
const size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const int idx = this->cell_to_aquifer_cell_idx_[cell_index];
// we only need the first aquifer cell
if (idx != 0) {
continue;
}
elem_ctx.updateAllIntensiveQuantities();
elem_ctx.updateAllExtensiveQuantities();
const size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0);
const auto &problem = elem_ctx.problem();
const auto &stencil = elem_ctx.stencil(0);
// const auto& inQuants = elem_ctx.intensiveQuantities(0, /*timeIdx*/ 0);
for (size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) {
const auto &face = stencil.interiorFace(face_idx);
// dof index
const size_t i = face.interiorIndex();
const size_t j = face.exteriorIndex();
// compressed index
const size_t I = stencil.globalSpaceIndex(i);
const size_t J = stencil.globalSpaceIndex(j);
assert(I == cell_index);
// we do not consider the flux within aquifer cells
// we only need the flux to the connections
if (this->cell_to_aquifer_cell_idx_[J] > 0) {
continue;
}
const auto &exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0);
const double water_flux = Toolbox::value(exQuants.volumeFlux(waterPhaseIdx));
const auto &intQuantsIn = elem_ctx.intensiveQuantities(i, 0);
const double invB = Toolbox::value(intQuantsIn.fluidState().invB(waterPhaseIdx));
// for NNC, the face area is one, so we do not need to multiply the face area here
aquifer_flux += water_flux * invB;
}
// we only need to handle the first aquifer cell, we can exit loop here
break;
}
return aquifer_flux;
}
};
} // namespace Opm
#endif