mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-01 21:39:09 -06:00
183 lines
5.6 KiB
C++
183 lines
5.6 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_CPRPRECONDITIONER_HEADER_INCLUDED
|
|
#define OPM_CPRPRECONDITIONER_HEADER_INCLUDED
|
|
|
|
|
|
#include "disable_warning_pragmas.h"
|
|
|
|
#include <dune/istl/bvector.hh>
|
|
#include <dune/istl/bcrsmatrix.hh>
|
|
#include <dune/istl/operators.hh>
|
|
#include <dune/istl/io.hh>
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
#include <dune/istl/preconditioners.hh>
|
|
#include <dune/istl/schwarz.hh>
|
|
#include <dune/istl/solvers.hh>
|
|
#include <dune/istl/paamg/amg.hh>
|
|
#include <dune/istl/paamg/kamg.hh>
|
|
#include <dune/istl/paamg/pinfo.hh>
|
|
|
|
#include "reenable_warning_pragmas.h"
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
/*!
|
|
\brief Sequential CPR preconditioner.
|
|
|
|
This is a two-stage preconditioner, combining an elliptic-type
|
|
partial solution with ILU0 for the whole system.
|
|
|
|
\tparam M The matrix type to operate on
|
|
\tparam X Type of the update
|
|
\tparam Y Type of the defect
|
|
*/
|
|
template<class M, class X, class Y>
|
|
class CPRPreconditioner : public Dune::Preconditioner<X,Y> {
|
|
public:
|
|
//! \brief The matrix type the preconditioner is for.
|
|
typedef typename Dune::remove_const<M>::type matrix_type;
|
|
//! \brief The domain type of the preconditioner.
|
|
typedef X domain_type;
|
|
//! \brief The range type of the preconditioner.
|
|
typedef Y range_type;
|
|
//! \brief The field type of the preconditioner.
|
|
typedef typename X::field_type field_type;
|
|
|
|
// define the category
|
|
enum {
|
|
//! \brief The category the preconditioner is part of.
|
|
category = Dune::SolverCategory::sequential
|
|
};
|
|
|
|
/*! \brief Constructor.
|
|
|
|
Constructor gets all parameters to operate the prec.
|
|
\param A The matrix to operate on.
|
|
\param Ae The top-left elliptic part of A.
|
|
\param w The ILU0 relaxation factor.
|
|
*/
|
|
CPRPreconditioner (const M& A, const M& Ae, const field_type relax)
|
|
: A_(A),
|
|
ILU_(A), // copy A (will be overwritten by ILU decomp)
|
|
Ae_(Ae),
|
|
relax_(relax)
|
|
{
|
|
Dune::bilu0_decomposition(ILU_);
|
|
}
|
|
|
|
/*!
|
|
\brief Prepare the preconditioner.
|
|
|
|
\copydoc Preconditioner::pre(X&,Y&)
|
|
*/
|
|
virtual void pre (X& /*x*/, Y& /*b*/)
|
|
{
|
|
}
|
|
|
|
/*!
|
|
\brief Apply the preconditoner.
|
|
|
|
\copydoc Preconditioner::apply(X&,const Y&)
|
|
*/
|
|
virtual void apply (X& v, const Y& d)
|
|
{
|
|
// Extract part of d corresponding to elliptic part.
|
|
Y de(Ae_.N());
|
|
// Note: Assumes that the elliptic part comes first.
|
|
std::copy_n(d.begin(), Ae_.N(), de.begin());
|
|
|
|
// Solve elliptic part, extend solution to full.
|
|
Y ve = solveElliptic(de);
|
|
Y vfull(ILU_.N());
|
|
vfull = 0.0;
|
|
// Again assuming that the elliptic part comes first.
|
|
std::copy(ve.begin(), ve.end(), vfull.begin());
|
|
|
|
// Subtract elliptic residual from initial residual.
|
|
// dmodified = d - A * vfull
|
|
Y dmodified = d;
|
|
A_.mmv(vfull, dmodified);
|
|
|
|
// Apply ILU0.
|
|
Y vilu(ILU_.N());
|
|
Dune::bilu_backsolve(ILU_, vilu, dmodified);
|
|
v = vfull;
|
|
v += vilu;
|
|
v *= relax_;
|
|
}
|
|
|
|
/*!
|
|
\brief Clean up.
|
|
|
|
\copydoc Preconditioner::post(X&)
|
|
*/
|
|
virtual void post (X& /*x*/)
|
|
{
|
|
}
|
|
|
|
private:
|
|
Y solveElliptic(Y& de)
|
|
{
|
|
// std::cout << "solveElliptic()" << std::endl;
|
|
// Construct operator, scalar product and vectors needed.
|
|
typedef Dune::MatrixAdapter<M,X,X> Operator;
|
|
Operator opAe(Ae_);
|
|
Dune::SeqScalarProduct<X> sp;
|
|
// Right hand side.
|
|
// System solution
|
|
X x(opAe.getmat().M());
|
|
x = 0.0;
|
|
|
|
// Construct preconditioner.
|
|
typedef typename Dune::SeqILU0<M,X,X> Preconditioner;
|
|
const double relax = 1.0;
|
|
Preconditioner precond(Ae_, relax);
|
|
|
|
// Construct linear solver.
|
|
const double tolerance = 1e-4;
|
|
const int maxit = 5000;
|
|
const int verbosity = 0;
|
|
Dune::BiCGSTABSolver<X> linsolve(opAe, sp, precond, tolerance, maxit, verbosity);
|
|
|
|
// Solve system.
|
|
Dune::InverseOperatorResult result;
|
|
linsolve.apply(x, de, result);
|
|
if (result.converged) {
|
|
// std::cout << "solveElliptic() successful!" << std::endl;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
//! \brief The matrix for the full linear problem.
|
|
const matrix_type& A_;
|
|
//! \brief The ILU0 decomposition of the matrix.
|
|
matrix_type ILU_;
|
|
//! \brief The elliptic part of the matrix.
|
|
matrix_type Ae_;
|
|
//! \brief The relaxation factor to use.
|
|
field_type relax_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_CPRPRECONDITIONER_HEADER_INCLUDED
|