mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 18:50:19 -06:00
616 lines
20 KiB
C++
616 lines
20 KiB
C++
/*
|
|
Copyright (C) 2008-2013 by Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::FractureProblem
|
|
*/
|
|
#ifndef EWOMS_FRACTURE_PROBLEM_HH
|
|
#define EWOMS_FRACTURE_PROBLEM_HH
|
|
|
|
#include <ewoms/parallel/mpihelper.hh>
|
|
|
|
#if HAVE_DUNE_ALUGRID
|
|
#include <dune/alugrid/grid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfalu.hh>
|
|
#else
|
|
#include <dune/grid/alugrid.hh>
|
|
#include <dune/alugrid/dgf.hh>
|
|
#endif
|
|
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
#include <opm/material/heatconduction/Somerton.hpp>
|
|
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/components/Dnapl.hpp>
|
|
#include <ewoms/io/artgridmanager.hh>
|
|
|
|
#include <ewoms/models/discretefracture/discretefracturemodel.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class FractureProblem;
|
|
}
|
|
|
|
namespace Ewoms {
|
|
namespace Properties {
|
|
// Create a type tag for the problem
|
|
NEW_TYPE_TAG(FractureProblem, INHERITS_FROM(DiscreteFractureModel));
|
|
|
|
// Set the GridManager property
|
|
SET_TYPE_PROP(FractureProblem, GridManager, Ewoms::ArtGridManager<TypeTag>);
|
|
|
|
// Set the grid type
|
|
SET_TYPE_PROP(
|
|
FractureProblem, Grid,
|
|
Dune::ALUGrid</*dim=*/2, /*dimWorld=*/2, Dune::simplex, Dune::nonconforming>);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(FractureProblem, Problem, Ewoms::FractureProblem<TypeTag>);
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(FractureProblem, WettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
SET_PROP(FractureProblem, NonwettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> > type;
|
|
};
|
|
|
|
// Set the material Law
|
|
SET_PROP(FractureProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>
|
|
Traits;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
typedef Opm::RegularizedBrooksCorey<Traits> EffectiveLaw;
|
|
// typedef RegularizedVanGenuchten<Traits> EffectiveLaw;
|
|
// typedef LinearMaterial<Traits> EffectiveLaw;
|
|
public:
|
|
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
|
|
};
|
|
|
|
// Enable the energy equation
|
|
SET_BOOL_PROP(FractureProblem, EnableEnergy, true);
|
|
|
|
// Set the heat conduction law
|
|
SET_PROP(FractureProblem, HeatConductionLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
typedef Opm::Somerton<FluidSystem, Scalar> type;
|
|
};
|
|
|
|
// Disable gravity
|
|
SET_BOOL_PROP(FractureProblem, EnableGravity, false);
|
|
|
|
// For this problem, we use constraints to specify the left boundary
|
|
SET_BOOL_PROP(FractureProblem, EnableConstraints, true);
|
|
|
|
// Set the default value for the file name of the grid
|
|
SET_STRING_PROP(FractureProblem, GridFile, "data/fracture.art");
|
|
|
|
// Set the default value for the end time
|
|
SET_SCALAR_PROP(FractureProblem, EndTime, 3e3);
|
|
|
|
// Set the default value for the initial time step size
|
|
SET_SCALAR_PROP(FractureProblem, InitialTimeStepSize, 100);
|
|
} // namespace Properties
|
|
} // namespace Ewoms
|
|
|
|
namespace Ewoms {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Two-phase problem which involves fractures
|
|
*
|
|
* The domain is initially completely saturated by the oil phase,
|
|
* except for the left side, which is fully water saturated. Since the
|
|
* capillary pressure in the fractures is lower than in the rock
|
|
* matrix and the material is hydrophilic, water infiltrates through
|
|
* the fractures and gradually pushes the oil out on the right side,
|
|
* where the pressure is kept constant.
|
|
*/
|
|
template <class TypeTag>
|
|
class FractureProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLawParams) HeatConductionLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
|
|
enum {
|
|
// phase indices
|
|
wettingPhaseIdx = MaterialLaw::wettingPhaseIdx,
|
|
nonWettingPhaseIdx = MaterialLaw::nonWettingPhaseIdx,
|
|
|
|
// number of phases
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
typedef Opm::ImmiscibleFluidState<Scalar, FluidSystem> FluidState;
|
|
|
|
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
template <int dim>
|
|
struct FaceLayout
|
|
{
|
|
bool contains(Dune::GeometryType gt)
|
|
{ return gt.dim() == dim - 1; }
|
|
};
|
|
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView, FaceLayout> FaceMapper;
|
|
|
|
typedef Ewoms::FractureMapper<TypeTag> FractureMapper;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
FractureProblem(Simulator &simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 3e-6;
|
|
temperature_ = 273.15 + 20; // -> 20°C
|
|
|
|
matrixMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
|
|
matrixMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
|
|
fractureMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
|
|
fractureMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
|
|
|
|
#if 0 // linear
|
|
matrixMaterialParams_.setEntryPC(0.0);
|
|
matrixMaterialParams_.setMaxPC(2000.0);
|
|
fractureMaterialParams_.setEntryPC(0.0);
|
|
fractureMaterialParams_.setMaxPC(1000.0);
|
|
#endif
|
|
|
|
#if 1 // Brooks-Corey
|
|
matrixMaterialParams_.setEntryPressure(2000);
|
|
matrixMaterialParams_.setLambda(2.0);
|
|
matrixMaterialParams_.setPcLowSw(1e-1);
|
|
fractureMaterialParams_.setEntryPressure(1000);
|
|
fractureMaterialParams_.setLambda(2.0);
|
|
fractureMaterialParams_.setPcLowSw(5e-2);
|
|
#endif
|
|
|
|
#if 0 // van Genuchten
|
|
matrixMaterialParams_.setVgAlpha(0.0037);
|
|
matrixMaterialParams_.setVgN(4.7);
|
|
fractureMaterialParams_.setVgAlpha(0.0025);
|
|
fractureMaterialParams_.setVgN(4.7);
|
|
#endif
|
|
|
|
matrixMaterialParams_.finalize();
|
|
fractureMaterialParams_.finalize();
|
|
|
|
matrixK_ = this->toDimMatrix_(1e-15); // m^2
|
|
fractureK_ = this->toDimMatrix_(1e5 * 1e-15); // m^2
|
|
|
|
matrixPorosity_ = 0.10;
|
|
fracturePorosity_ = 0.25;
|
|
fractureWidth_ = 1e-3; // [m]
|
|
|
|
// parameters for the somerton law of heat conduction
|
|
computeHeatCondParams_(heatCondParams_, matrixPorosity_);
|
|
}
|
|
|
|
/*!
|
|
* \name Auxiliary methods
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "fracture_" << Model::name();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \brief Called directly after the time integration.
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
// checkConservativeness() does not include the effect of constraints, so we
|
|
// disable it for this problem...
|
|
//this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return temperature_; }
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Soil parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ return matrixK_; }
|
|
|
|
/*!
|
|
* \brief Intrinsic permeability of fractures.
|
|
*
|
|
* \copydoc Doxygen::contextParams
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &fractureIntrinsicPermeability(const Context &context,
|
|
int spaceIdx,
|
|
int timeIdx) const
|
|
{ return fractureK_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return matrixPorosity_; }
|
|
|
|
/*!
|
|
* \brief The porosity inside the fractures.
|
|
*
|
|
* \copydoc Doxygen::contextParams
|
|
*/
|
|
template <class Context>
|
|
Scalar fracturePorosity(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ return fracturePorosity_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{ return matrixMaterialParams_; }
|
|
|
|
/*!
|
|
* \brief The parameters for the material law inside the fractures.
|
|
*
|
|
* \copydoc Doxygen::contextParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &fractureMaterialLawParams(const Context &context,
|
|
int spaceIdx,
|
|
int timeIdx) const
|
|
{ return fractureMaterialParams_; }
|
|
|
|
/*!
|
|
* \brief Returns the object representating the fracture topology.
|
|
*/
|
|
const FractureMapper &fractureMapper() const
|
|
{ return this->simulator().gridManager().fractureMapper(); }
|
|
|
|
/*!
|
|
* \brief Returns the width of the fracture.
|
|
*
|
|
* \todo This method should get one face index instead of two
|
|
* vertex indices. This probably requires a new context
|
|
* class, though.
|
|
*
|
|
* \param context The execution context.
|
|
* \param spaceIdx1 The local index of the edge's first edge.
|
|
* \param spaceIdx2 The local index of the edge's second edge.
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
Scalar fractureWidth(const Context &context, int spaceIdx1, int spaceIdx2,
|
|
int timeIdx) const
|
|
{ return fractureWidth_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::heatConductionParams
|
|
*/
|
|
template <class Context>
|
|
const HeatConductionLawParams &
|
|
heatConductionParams(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return heatCondParams_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
|
|
*
|
|
* In this case, we assume the rock-matrix to be granite.
|
|
*/
|
|
template <class Context>
|
|
Scalar heatCapacitySolid(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
return 790 // specific heat capacity of granite [J / (kg K)]
|
|
* 2700; // density of granite [kg/m^3]
|
|
}
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
// \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onRightBoundary_(pos)) {
|
|
// on the right boundary, we impose a free-flow
|
|
// (i.e. Dirichlet) condition
|
|
FluidState fluidState;
|
|
fluidState.setTemperature(temperature_);
|
|
|
|
fluidState.setSaturation(wettingPhaseIdx, 0.0);
|
|
fluidState.setSaturation(nonWettingPhaseIdx,
|
|
1.0 - fluidState.saturation(wettingPhaseIdx));
|
|
|
|
fluidState.setPressure(wettingPhaseIdx, 1e5);
|
|
fluidState.setPressure(nonWettingPhaseIdx, fluidState.pressure(wettingPhaseIdx));
|
|
|
|
// set a free flow (i.e. Dirichlet) boundary
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fluidState);
|
|
}
|
|
else
|
|
// for the upper, lower and left boundaries, use a no-flow
|
|
// condition (i.e. a Neumann 0 condition)
|
|
values.setNoFlow();
|
|
}
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
// \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::constraints
|
|
*/
|
|
template <class Context>
|
|
void constraints(Constraints &constraints, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (!onLeftBoundary_(pos))
|
|
// only impose constraints adjacent to the left boundary
|
|
return;
|
|
|
|
int globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
if (!fractureMapper().isFractureVertex(globalIdx)) {
|
|
// do not impose constraints if the finite volume does
|
|
// not contain fractures.
|
|
return;
|
|
}
|
|
|
|
// if the current finite volume is on the left boundary
|
|
// and features a fracture, specify the fracture fluid
|
|
// state.
|
|
FluidState fractureFluidState;
|
|
fractureFluidState.setTemperature(temperature_ + 10);
|
|
|
|
fractureFluidState.setSaturation(wettingPhaseIdx, 1.0);
|
|
fractureFluidState.setSaturation(nonWettingPhaseIdx,
|
|
1.0 - fractureFluidState.saturation(
|
|
wettingPhaseIdx));
|
|
|
|
Scalar pCFracture[numPhases];
|
|
MaterialLaw::capillaryPressures(pCFracture, fractureMaterialParams_,
|
|
fractureFluidState);
|
|
|
|
fractureFluidState.setPressure(wettingPhaseIdx, /*pressure=*/1.0e5);
|
|
fractureFluidState.setPressure(nonWettingPhaseIdx,
|
|
fractureFluidState.pressure(wettingPhaseIdx)
|
|
+ (pCFracture[nonWettingPhaseIdx]
|
|
- pCFracture[wettingPhaseIdx]));
|
|
|
|
constraints.setAllConstraint();
|
|
constraints.assignNaiveFromFracture(fractureFluidState,
|
|
matrixMaterialParams_);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
FluidState fluidState;
|
|
fluidState.setTemperature(temperature_);
|
|
fluidState.setPressure(FluidSystem::wettingPhaseIdx, /*pressure=*/1e5);
|
|
fluidState.setPressure(nonWettingPhaseIdx, fluidState.pressure(wettingPhaseIdx));
|
|
|
|
fluidState.setSaturation(wettingPhaseIdx, 0.0);
|
|
fluidState.setSaturation(nonWettingPhaseIdx,
|
|
1.0 - fluidState.saturation(wettingPhaseIdx));
|
|
|
|
values.assignNaive(fluidState);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector &rate, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
// \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
void computeHeatCondParams_(HeatConductionLawParams ¶ms, Scalar poro)
|
|
{
|
|
Scalar lambdaGranite = 2.8; // [W / (K m)]
|
|
|
|
// create a Fluid state which has all phases present
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setTemperature(293.15);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fs.setPressure(phaseIdx, 1.0135e5);
|
|
}
|
|
|
|
typename FluidSystem::ParameterCache paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
fs.setDensity(phaseIdx, rho);
|
|
}
|
|
|
|
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar lambdaSaturated;
|
|
if (FluidSystem::isLiquid(phaseIdx)) {
|
|
Scalar lambdaFluid = FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
|
|
lambdaSaturated =
|
|
std::pow(lambdaGranite, (1 - poro))
|
|
+ std::pow(lambdaFluid, poro);
|
|
}
|
|
else
|
|
lambdaSaturated = std::pow(lambdaGranite, (1 - poro));
|
|
|
|
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
|
|
}
|
|
|
|
Scalar lambdaVac = std::pow(lambdaGranite, (1 - poro));
|
|
params.setVacuumLambda(lambdaVac);
|
|
}
|
|
|
|
DimMatrix matrixK_;
|
|
DimMatrix fractureK_;
|
|
|
|
Scalar matrixPorosity_;
|
|
Scalar fracturePorosity_;
|
|
|
|
Scalar fractureWidth_;
|
|
|
|
MaterialLawParams fractureMaterialParams_;
|
|
MaterialLawParams matrixMaterialParams_;
|
|
|
|
HeatConductionLawParams heatCondParams_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif // EWOMS_FRACTURE_PROBLEM_HH
|