mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-24 19:16:26 -06:00
756de358c0
this requires the multi-region PVT patch for opm-core
835 lines
34 KiB
C++
835 lines
34 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/BlackoilPropsAd.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
// Making these typedef to make the code more readable.
|
|
typedef BlackoilPropsAd::ADB ADB;
|
|
typedef BlackoilPropsAd::V V;
|
|
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Block;
|
|
|
|
/// Constructor wrapping an opm-core black oil interface.
|
|
BlackoilPropsAd::BlackoilPropsAd(const BlackoilPropertiesInterface& props)
|
|
: props_(props),
|
|
pu_(props.phaseUsage())
|
|
{
|
|
}
|
|
|
|
////////////////////////////
|
|
// Rock interface //
|
|
////////////////////////////
|
|
|
|
/// \return D, the number of spatial dimensions.
|
|
int BlackoilPropsAd::numDimensions() const
|
|
{
|
|
return props_.numDimensions();
|
|
}
|
|
|
|
/// \return N, the number of cells.
|
|
int BlackoilPropsAd::numCells() const
|
|
{
|
|
return props_.numCells();
|
|
}
|
|
|
|
/// \return Array of N porosity values.
|
|
const double* BlackoilPropsAd::porosity() const
|
|
{
|
|
return props_.porosity();
|
|
}
|
|
|
|
/// \return Array of ND^2 permeability values.
|
|
/// The D^2 permeability values for a cell are organized as a matrix,
|
|
/// which is symmetric (so ordering does not matter).
|
|
const double* BlackoilPropsAd::permeability() const
|
|
{
|
|
return props_.permeability();
|
|
}
|
|
|
|
|
|
////////////////////////////
|
|
// Fluid interface //
|
|
////////////////////////////
|
|
|
|
/// \return Number of active phases (also the number of components).
|
|
int BlackoilPropsAd::numPhases() const
|
|
{
|
|
return props_.numPhases();
|
|
}
|
|
|
|
/// \return Object describing the active phases.
|
|
PhaseUsage BlackoilPropsAd::phaseUsage() const
|
|
{
|
|
return props_.phaseUsage();
|
|
}
|
|
|
|
// ------ Density ------
|
|
|
|
/// Densities of stock components at surface conditions.
|
|
/// \return Array of 3 density values.
|
|
const double* BlackoilPropsAd::surfaceDensity(int regionIdx) const
|
|
{
|
|
// this class only supports a single PVT region for now...
|
|
assert(regionIdx == 0);
|
|
return props_.surfaceDensity();
|
|
}
|
|
|
|
|
|
// ------ Viscosity ------
|
|
|
|
/// Water viscosity.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V BlackoilPropsAd::muWat(const V& pw,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Water]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pw.size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
Block mu(n, np);
|
|
props_.viscosity(n, pw.data(), z.data(), cells.data(), mu.data(), 0);
|
|
return mu.col(pu_.phase_pos[Water]);
|
|
}
|
|
|
|
/// Oil viscosity.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n taxonomies classifying fluid condition.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V BlackoilPropsAd::muOil(const V& po,
|
|
const V& rs,
|
|
const std::vector<PhasePresence>& /*cond*/,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Oil]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(po.size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
if (pu_.phase_used[Gas]) {
|
|
// Faking a z with the right ratio:
|
|
// rs = zg/zo
|
|
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
|
|
z.col(pu_.phase_pos[Gas]) = rs;
|
|
}
|
|
Block mu(n, np);
|
|
props_.viscosity(n, po.data(), z.data(), cells.data(), mu.data(), 0);
|
|
return mu.col(pu_.phase_pos[Oil]);
|
|
}
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
V BlackoilPropsAd::muGas(const V& pg,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Gas]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pg.size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
Block mu(n, np);
|
|
props_.viscosity(n, pg.data(), z.data(), cells.data(), mu.data(), 0);
|
|
return mu.col(pu_.phase_pos[Gas]);
|
|
}
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] rv Array of n vapor oil/gas ratio
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V BlackoilPropsAd::muGas(const V& pg,
|
|
const V& rv,
|
|
const std::vector<PhasePresence>& /*cond*/,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Gas]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pg.size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
if (pu_.phase_used[Oil]) {
|
|
// Faking a z with the right ratio:
|
|
// rv = zo/zg
|
|
z.col(pu_.phase_pos[Oil]) = rv;
|
|
z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1);
|
|
}
|
|
Block mu(n, np);
|
|
props_.viscosity(n, pg.data(), z.data(), cells.data(), mu.data(), 0);
|
|
return mu.col(pu_.phase_pos[Gas]);
|
|
}
|
|
|
|
/// Water viscosity.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB BlackoilPropsAd::muWat(const ADB& pw,
|
|
const Cells& cells) const
|
|
{
|
|
#if 1
|
|
return ADB::constant(muWat(pw.value(), cells), pw.blockPattern());
|
|
#else
|
|
if (!pu_.phase_used[Water]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pw.value().size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
Block mu(n, np);
|
|
Block dmu(n, np);
|
|
props_.viscosity(n, pw.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
|
|
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Water]));
|
|
const int num_blocks = pw.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dmu_diag * pw.derivative()[block];
|
|
}
|
|
return ADB::function(mu.col(pu_.phase_pos[Water]), jacs);
|
|
#endif
|
|
}
|
|
|
|
/// Oil viscosity.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n taxonomies classifying fluid condition.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB BlackoilPropsAd::muOil(const ADB& po,
|
|
const ADB& rs,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const
|
|
{
|
|
#if 1
|
|
return ADB::constant(muOil(po.value(), rs.value(), cond, cells), po.blockPattern());
|
|
#else
|
|
if (!pu_.phase_used[Oil]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(po.value().size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
if (pu_.phase_used[Gas]) {
|
|
// Faking a z with the right ratio:
|
|
// rs = zg/zo
|
|
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
|
|
z.col(pu_.phase_pos[Gas]) = rs.value();
|
|
}
|
|
Block mu(n, np);
|
|
Block dmu(n, np);
|
|
props_.viscosity(n, po.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
|
|
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Oil]));
|
|
const int num_blocks = po.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
// For now, we deliberately ignore the derivative with respect to rs,
|
|
// since the BlackoilPropertiesInterface class does not evaluate it.
|
|
// We would add to the next line: + dmu_drs_diag * rs.derivative()[block]
|
|
jacs[block] = dmu_diag * po.derivative()[block];
|
|
}
|
|
return ADB::function(mu.col(pu_.phase_pos[Oil]), jacs);
|
|
#endif
|
|
}
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB BlackoilPropsAd::muGas(const ADB& pg,
|
|
const Cells& cells) const
|
|
{
|
|
#if 1
|
|
return ADB::constant(muGas(pg.value(), cells), pg.blockPattern());
|
|
#else
|
|
if (!pu_.phase_used[Gas]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pg.value().size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
Block mu(n, np);
|
|
Block dmu(n, np);
|
|
props_.viscosity(n, pg.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
|
|
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Gas]));
|
|
const int num_blocks = pg.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dmu_diag * pg.derivative()[block];
|
|
}
|
|
return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs);
|
|
#endif
|
|
}
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] rv Array of n vapor oil/gas ratio
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB BlackoilPropsAd::muGas(const ADB& pg,
|
|
const ADB& rv,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const
|
|
{
|
|
#if 1
|
|
return ADB::constant(muGas(pg.value(), rv.value(),cond,cells), pg.blockPattern());
|
|
#else
|
|
if (!pu_.phase_used[Gas]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pg.value().size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
if (pu_.phase_used[Oil]) {
|
|
// Faking a z with the right ratio:
|
|
// rv = zo/zg
|
|
z.col(pu_.phase_pos[Oil]) = rv;
|
|
z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1);
|
|
}
|
|
Block mu(n, np);
|
|
Block dmu(n, np);
|
|
props_.viscosity(n, pg.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
|
|
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Gas]));
|
|
const int num_blocks = pg.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dmu_diag * pg.derivative()[block];
|
|
}
|
|
return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs);
|
|
#endif
|
|
}
|
|
|
|
|
|
// ------ Formation volume factor (b) ------
|
|
|
|
// These methods all call the matrix() method, after which the variable
|
|
// (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for
|
|
// a cell. For three-phase black oil:
|
|
// A = [ bw 0 0
|
|
// 0 bo 0
|
|
// 0 b0*rs bw ]
|
|
// Where b = B^{-1}.
|
|
// Therefore, we extract the correct diagonal element, and are done.
|
|
// When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs),
|
|
// we also get the following derivative matrix:
|
|
// A = [ dbw 0 0
|
|
// 0 dbo 0
|
|
// 0 db0*rs dbw ]
|
|
// Again, we just extract a diagonal element.
|
|
|
|
/// Water formation volume factor.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V BlackoilPropsAd::bWat(const V& pw,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Water]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call bWat(): water phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pw.size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
Block matrix(n, np*np);
|
|
props_.matrix(n, pw.data(), z.data(), cells.data(), matrix.data(), 0);
|
|
const int wi = pu_.phase_pos[Water];
|
|
return matrix.col(wi*np + wi);
|
|
}
|
|
|
|
/// Oil formation volume factor.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n taxonomies classifying fluid condition.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V BlackoilPropsAd::bOil(const V& po,
|
|
const V& rs,
|
|
const std::vector<PhasePresence>& /*cond*/,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Oil]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call bOil(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(po.size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
if (pu_.phase_used[Gas]) {
|
|
// Faking a z with the right ratio:
|
|
// rs = zg/zo
|
|
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
|
|
z.col(pu_.phase_pos[Gas]) = rs;
|
|
}
|
|
Block matrix(n, np*np);
|
|
props_.matrix(n, po.data(), z.data(), cells.data(), matrix.data(), 0);
|
|
const int oi = pu_.phase_pos[Oil];
|
|
return matrix.col(oi*np + oi);
|
|
}
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V BlackoilPropsAd::bGas(const V& pg,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Gas]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pg.size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
Block matrix(n, np*np);
|
|
props_.matrix(n, pg.data(), z.data(), cells.data(), matrix.data(), 0);
|
|
const int gi = pu_.phase_pos[Gas];
|
|
return matrix.col(gi*np + gi);
|
|
}
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] rv Array of n vapor oil/gas ratio
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
V BlackoilPropsAd::bGas(const V& pg,
|
|
const V& rv,
|
|
const std::vector<PhasePresence>& /*cond*/,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Gas]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pg.size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
if (pu_.phase_used[Oil]) {
|
|
// Faking a z with the right ratio:
|
|
// rv = zo/zg
|
|
z.col(pu_.phase_pos[Oil]) = rv;
|
|
z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1);
|
|
}
|
|
Block matrix(n, np*np);
|
|
props_.matrix(n, pg.data(), z.data(), cells.data(), matrix.data(), 0);
|
|
const int gi = pu_.phase_pos[Gas];
|
|
return matrix.col(gi*np + gi);
|
|
}
|
|
|
|
/// Water formation volume factor.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB BlackoilPropsAd::bWat(const ADB& pw,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Water]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pw.value().size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
Block matrix(n, np*np);
|
|
Block dmatrix(n, np*np);
|
|
props_.matrix(n, pw.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
|
|
const int phase_ind = pu_.phase_pos[Water];
|
|
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
|
|
ADB::M db_diag = spdiag(dmatrix.col(column));
|
|
const int num_blocks = pw.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = db_diag * pw.derivative()[block];
|
|
}
|
|
return ADB::function(matrix.col(column), jacs);
|
|
}
|
|
|
|
/// Oil formation volume factor.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n taxonomies classifying fluid condition.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB BlackoilPropsAd::bOil(const ADB& po,
|
|
const ADB& rs,
|
|
const std::vector<PhasePresence>& /*cond*/,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Oil]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(po.value().size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
if (pu_.phase_used[Gas]) {
|
|
// Faking a z with the right ratio:
|
|
// rs = zg/zo
|
|
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
|
|
z.col(pu_.phase_pos[Gas]) = rs.value();
|
|
}
|
|
Block matrix(n, np*np);
|
|
Block dmatrix(n, np*np);
|
|
props_.matrix(n, po.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
|
|
const int phase_ind = pu_.phase_pos[Oil];
|
|
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
|
|
ADB::M db_diag = spdiag(dmatrix.col(column));
|
|
const int num_blocks = po.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
// For now, we deliberately ignore the derivative with respect to rs,
|
|
// since the BlackoilPropertiesInterface class does not evaluate it.
|
|
// We would add to the next line: + db_drs_diag * rs.derivative()[block]
|
|
jacs[block] = db_diag * po.derivative()[block];
|
|
}
|
|
return ADB::function(matrix.col(column), jacs);
|
|
}
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB BlackoilPropsAd::bGas(const ADB& pg,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Gas]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pg.value().size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
Block matrix(n, np*np);
|
|
Block dmatrix(n, np*np);
|
|
props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
|
|
const int phase_ind = pu_.phase_pos[Gas];
|
|
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
|
|
ADB::M db_diag = spdiag(dmatrix.col(column));
|
|
const int num_blocks = pg.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = db_diag * pg.derivative()[block];
|
|
}
|
|
return ADB::function(matrix.col(column), jacs);
|
|
}
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] rv Array of n vapor oil/gas ratio
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB BlackoilPropsAd::bGas(const ADB& pg,
|
|
const ADB& rv,
|
|
const std::vector<PhasePresence>& /*cond*/,
|
|
const Cells& cells) const
|
|
{
|
|
if (!pu_.phase_used[Gas]) {
|
|
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
|
|
}
|
|
const int n = cells.size();
|
|
assert(pg.value().size() == n);
|
|
const int np = props_.numPhases();
|
|
Block z = Block::Zero(n, np);
|
|
if (pu_.phase_used[Oil]) {
|
|
// Faking a z with the right ratio:
|
|
// rv = zo/zg
|
|
z.col(pu_.phase_pos[Oil]) = rv.value();
|
|
z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1);
|
|
}
|
|
Block matrix(n, np*np);
|
|
Block dmatrix(n, np*np);
|
|
props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
|
|
const int phase_ind = pu_.phase_pos[Gas];
|
|
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
|
|
ADB::M db_diag = spdiag(dmatrix.col(column));
|
|
const int num_blocks = pg.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = db_diag * pg.derivative()[block];
|
|
}
|
|
return ADB::function(matrix.col(column), jacs);
|
|
}
|
|
|
|
|
|
// ------ Rs bubble point curve ------
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V BlackoilPropsAd::rsSat(const V& po,
|
|
const Cells& cells) const
|
|
{
|
|
// Suppress warning about "unused parameters".
|
|
static_cast<void>(po);
|
|
static_cast<void>(cells);
|
|
|
|
OPM_THROW(std::runtime_error, "Method rsMax() not implemented.");
|
|
}
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB BlackoilPropsAd::rsSat(const ADB& po,
|
|
const Cells& cells) const
|
|
{
|
|
// Suppress warning about "unused parameters".
|
|
static_cast<void>(po);
|
|
static_cast<void>(cells);
|
|
|
|
OPM_THROW(std::runtime_error, "Method rsMax() not implemented.");
|
|
}
|
|
|
|
// ------ Rs bubble point curve ------
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V BlackoilPropsAd::rvSat(const V& po,
|
|
const Cells& cells) const
|
|
{
|
|
// Suppress warning about "unused parameters".
|
|
static_cast<void>(po);
|
|
static_cast<void>(cells);
|
|
|
|
OPM_THROW(std::runtime_error, "Method rsMax() not implemented.");
|
|
}
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB BlackoilPropsAd::rvSat(const ADB& po,
|
|
const Cells& cells) const
|
|
{
|
|
// Suppress warning about "unused parameters".
|
|
static_cast<void>(po);
|
|
static_cast<void>(cells);
|
|
|
|
OPM_THROW(std::runtime_error, "Method rsMax() not implemented.");
|
|
}
|
|
|
|
// ------ Relative permeability ------
|
|
|
|
/// Relative permeabilities for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
|
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
|
std::vector<V> BlackoilPropsAd::relperm(const V& sw,
|
|
const V& so,
|
|
const V& sg,
|
|
const Cells& cells) const
|
|
{
|
|
const int n = cells.size();
|
|
const int np = props_.numPhases();
|
|
Block s_all(n, np);
|
|
if (pu_.phase_used[Water]) {
|
|
assert(sw.size() == n);
|
|
s_all.col(pu_.phase_pos[Water]) = sw;
|
|
}
|
|
if (pu_.phase_used[Oil]) {
|
|
assert(so.size() == n);
|
|
s_all.col(pu_.phase_pos[Oil]) = so;
|
|
}
|
|
if (pu_.phase_used[Gas]) {
|
|
assert(sg.size() == n);
|
|
s_all.col(pu_.phase_pos[Gas]) = sg;
|
|
}
|
|
Block kr(n, np);
|
|
props_.relperm(n, s_all.data(), cells.data(), kr.data(), 0);
|
|
std::vector<V> relperms;
|
|
relperms.reserve(3);
|
|
for (int phase = 0; phase < 3; ++phase) {
|
|
if (pu_.phase_used[phase]) {
|
|
relperms.emplace_back(kr.col(pu_.phase_pos[phase]));
|
|
} else {
|
|
relperms.emplace_back();
|
|
}
|
|
}
|
|
return relperms;
|
|
}
|
|
|
|
/// Relative permeabilities for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
|
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
|
std::vector<ADB> BlackoilPropsAd::relperm(const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg,
|
|
const Cells& cells) const
|
|
{
|
|
const int n = cells.size();
|
|
const int np = props_.numPhases();
|
|
Block s_all(n, np);
|
|
if (pu_.phase_used[Water]) {
|
|
assert(sw.value().size() == n);
|
|
s_all.col(pu_.phase_pos[Water]) = sw.value();
|
|
}
|
|
if (pu_.phase_used[Oil]) {
|
|
assert(so.value().size() == n);
|
|
s_all.col(pu_.phase_pos[Oil]) = so.value();
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "BlackoilPropsAd::relperm() assumes oil phase is active.");
|
|
}
|
|
if (pu_.phase_used[Gas]) {
|
|
assert(sg.value().size() == n);
|
|
s_all.col(pu_.phase_pos[Gas]) = sg.value();
|
|
}
|
|
Block kr(n, np);
|
|
Block dkr(n, np*np);
|
|
props_.relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
|
|
const int num_blocks = so.numBlocks();
|
|
std::vector<ADB> relperms;
|
|
relperms.reserve(3);
|
|
typedef const ADB* ADBPtr;
|
|
ADBPtr s[3] = { &sw, &so, &sg };
|
|
for (int phase1 = 0; phase1 < 3; ++phase1) {
|
|
if (pu_.phase_used[phase1]) {
|
|
const int phase1_pos = pu_.phase_pos[phase1];
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
|
|
}
|
|
for (int phase2 = 0; phase2 < 3; ++phase2) {
|
|
if (!pu_.phase_used[phase2]) {
|
|
continue;
|
|
}
|
|
const int phase2_pos = pu_.phase_pos[phase2];
|
|
// Assemble dkr1/ds2.
|
|
const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
|
|
ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block];
|
|
}
|
|
}
|
|
relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
|
|
} else {
|
|
relperms.emplace_back(ADB::null());
|
|
}
|
|
}
|
|
return relperms;
|
|
}
|
|
|
|
std::vector<ADB> BlackoilPropsAd::capPress(const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg,
|
|
const Cells& cells) const
|
|
|
|
{
|
|
const int numCells = cells.size();
|
|
const int numActivePhases = numPhases();
|
|
const int numBlocks = so.numBlocks();
|
|
|
|
Block activeSat(numCells, numActivePhases);
|
|
if (pu_.phase_used[Water]) {
|
|
assert(sw.value().size() == numCells);
|
|
activeSat.col(pu_.phase_pos[Water]) = sw.value();
|
|
}
|
|
if (pu_.phase_used[Oil]) {
|
|
assert(so.value().size() == numCells);
|
|
activeSat.col(pu_.phase_pos[Oil]) = so.value();
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
|
|
}
|
|
if (pu_.phase_used[Gas]) {
|
|
assert(sg.value().size() == numCells);
|
|
activeSat.col(pu_.phase_pos[Gas]) = sg.value();
|
|
}
|
|
|
|
Block pc(numCells, numActivePhases);
|
|
Block dpc(numCells, numActivePhases*numActivePhases);
|
|
props_.capPress(numCells, activeSat.data(), cells.data(), pc.data(), dpc.data());
|
|
|
|
std::vector<ADB> adbCapPressures;
|
|
adbCapPressures.reserve(3);
|
|
const ADB* s[3] = { &sw, &so, &sg };
|
|
for (int phase1 = 0; phase1 < 3; ++phase1) {
|
|
if (pu_.phase_used[phase1]) {
|
|
const int phase1_pos = pu_.phase_pos[phase1];
|
|
std::vector<ADB::M> jacs(numBlocks);
|
|
for (int block = 0; block < numBlocks; ++block) {
|
|
jacs[block] = ADB::M(numCells, s[phase1]->derivative()[block].cols());
|
|
}
|
|
for (int phase2 = 0; phase2 < 3; ++phase2) {
|
|
if (!pu_.phase_used[phase2])
|
|
continue;
|
|
const int phase2_pos = pu_.phase_pos[phase2];
|
|
// Assemble dpc1/ds2.
|
|
const int column = phase1_pos + numActivePhases*phase2_pos; // Recall: Fortran ordering from props_.relperm()
|
|
ADB::M dpc1_ds2_diag = spdiag(dpc.col(column));
|
|
for (int block = 0; block < numBlocks; ++block) {
|
|
jacs[block] += dpc1_ds2_diag * s[phase2]->derivative()[block];
|
|
}
|
|
}
|
|
adbCapPressures.emplace_back(ADB::function(pc.col(phase1_pos), jacs));
|
|
} else {
|
|
adbCapPressures.emplace_back(ADB::null());
|
|
}
|
|
}
|
|
return adbCapPressures;
|
|
}
|
|
|
|
|
|
|
|
/// Saturation update for hysteresis behavior.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
void BlackoilPropsAd::updateSatHyst(const std::vector<double>& /* saturation */,
|
|
const std::vector<int>& /* cells */)
|
|
{
|
|
OPM_THROW(std::logic_error, "BlackoilPropsAd class does not support hysteresis.");
|
|
}
|
|
|
|
|
|
} // namespace Opm
|
|
|