opm-simulators/opm/simulators/wells/SingleWellState.cpp

280 lines
9.3 KiB
C++

/*
Copyright 2021 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/SingleWellState.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
namespace Opm {
SingleWellState::SingleWellState(const std::string& name_,
const ParallelWellInfo& pinfo,
bool is_producer,
double pressure_first_connection,
const std::vector<PerforationData>& perf_input,
const PhaseUsage& pu_,
double temp)
: name(name_)
, parallel_info(pinfo)
, producer(is_producer)
, pu(pu_)
, temperature(temp)
, well_potentials(pu_.num_phases)
, productivity_index(pu_.num_phases)
, surface_rates(pu_.num_phases)
, reservoir_rates(pu_.num_phases)
, perf_data(perf_input.size(), pressure_first_connection, !is_producer, pu_.num_phases)
, trivial_target(false)
{
for (std::size_t perf = 0; perf < perf_input.size(); perf++) {
this->perf_data.cell_index[perf] = perf_input[perf].cell_index;
this->perf_data.connection_transmissibility_factor[perf] = perf_input[perf].connection_transmissibility_factor;
this->perf_data.satnum_id[perf] = perf_input[perf].satnum_id;
this->perf_data.ecl_index[perf] = perf_input[perf].ecl_index;
}
}
void SingleWellState::init_timestep(const SingleWellState& other) {
if (this->producer != other.producer)
return;
if (this->status == Well::Status::SHUT)
return;
if (other.status == Well::Status::SHUT)
return;
this->bhp = other.bhp;
this->thp = other.thp;
this->temperature = other.temperature;
}
void SingleWellState::shut() {
this->bhp = 0;
this->thp = 0;
this->status = Well::Status::SHUT;
std::fill(this->surface_rates.begin(), this->surface_rates.end(), 0);
std::fill(this->reservoir_rates.begin(), this->reservoir_rates.end(), 0);
std::fill(this->productivity_index.begin(), this->productivity_index.end(), 0);
auto& connpi = this->perf_data.prod_index;
connpi.assign(connpi.size(), 0);
}
void SingleWellState::stop() {
this->thp = 0;
this->status = Well::Status::STOP;
}
void SingleWellState::open() {
this->status = Well::Status::OPEN;
}
void SingleWellState::updateStatus(Well::Status new_status) {
switch (new_status) {
case Well::Status::OPEN:
this->open();
break;
case Well::Status::SHUT:
this->shut();
break;
case Well::Status::STOP:
this->stop();
break;
default:
throw std::logic_error("Invalid well status");
}
}
void SingleWellState::reset_connection_factors(const std::vector<PerforationData>& new_perf_data) {
if (this->perf_data.size() != new_perf_data.size()) {
throw std::invalid_argument {
"Size mismatch for perforation data in well " + this->name
};
}
for (std::size_t conn_index = 0; conn_index < new_perf_data.size(); conn_index++) {
if (this->perf_data.cell_index[conn_index] != static_cast<std::size_t>(new_perf_data[conn_index].cell_index)) {
throw std::invalid_argument {
"Cell index mismatch in connection "
+ std::to_string(conn_index)
+ " of well "
+ this->name
};
}
if (this->perf_data.satnum_id[conn_index] != new_perf_data[conn_index].satnum_id) {
throw std::invalid_argument {
"Saturation function table mismatch in connection "
+ std::to_string(conn_index)
+ " of well "
+ this->name
};
}
this->perf_data.connection_transmissibility_factor[conn_index] = new_perf_data[conn_index].connection_transmissibility_factor;
}
}
double SingleWellState::sum_connection_rates(const std::vector<double>& connection_rates) const {
return this->parallel_info.get().sumPerfValues(connection_rates.begin(), connection_rates.end());
}
double SingleWellState::sum_brine_rates() const {
return this->sum_connection_rates(this->perf_data.brine_rates);
}
double SingleWellState::sum_polymer_rates() const {
return this->sum_connection_rates(this->perf_data.polymer_rates);
}
double SingleWellState::sum_solvent_rates() const {
return this->sum_connection_rates(this->perf_data.solvent_rates);
}
void SingleWellState::update_producer_targets(const Well& ecl_well, const SummaryState& st) {
const double bhp_safety_factor = 0.99;
const auto& prod_controls = ecl_well.productionControls(st);
auto cmode_is_bhp = (prod_controls.cmode == Well::ProducerCMode::BHP);
auto bhp_limit = prod_controls.bhp_limit;
if (ecl_well.getStatus() == Well::Status::STOP) {
if (cmode_is_bhp)
this->bhp = bhp_limit;
else
this->bhp = this->perf_data.pressure_first_connection;
return;
}
switch (prod_controls.cmode) {
case Well::ProducerCMode::ORAT:
assert(this->pu.phase_used[BlackoilPhases::Liquid]);
this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = -prod_controls.oil_rate;
break;
case Well::ProducerCMode::WRAT:
assert(this->pu.phase_used[BlackoilPhases::Aqua]);
this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = -prod_controls.water_rate;
break;
case Well::ProducerCMode::GRAT:
assert(this->pu.phase_used[BlackoilPhases::Vapour]);
this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = -prod_controls.gas_rate;
break;
case Well::ProducerCMode::GRUP:
case Well::ProducerCMode::THP:
case Well::ProducerCMode::BHP:
if (this->pu.phase_used[BlackoilPhases::Liquid]) {
this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = -1000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day;
}
if (this->pu.phase_used[BlackoilPhases::Aqua]) {
this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = -1000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day;
}
if (this->pu.phase_used[BlackoilPhases::Vapour]){
this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = -100000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day;
}
break;
default:
// Keep zero init.
break;
}
if (prod_controls.cmode == Well::ProducerCMode::THP) {
this->thp = prod_controls.thp_limit;
}
if (cmode_is_bhp)
this->bhp = bhp_limit;
else
this->bhp = this->perf_data.pressure_first_connection * bhp_safety_factor;
}
void SingleWellState::update_injector_targets(const Well& ecl_well, const SummaryState& st) {
const double bhp_safety_factor = 1.01;
const auto& inj_controls = ecl_well.injectionControls(st);
if (inj_controls.hasControl(Well::InjectorCMode::THP))
this->thp = inj_controls.thp_limit;
auto cmode_is_bhp = (inj_controls.cmode == Well::InjectorCMode::BHP);
auto bhp_limit = inj_controls.bhp_limit;
if (ecl_well.getStatus() == Well::Status::STOP) {
if (cmode_is_bhp)
this->bhp = bhp_limit;
else
this->bhp = this->perf_data.pressure_first_connection;
return;
}
if (inj_controls.cmode == Well::InjectorCMode::GRUP) {
this->bhp = this->perf_data.pressure_first_connection * bhp_safety_factor;
return;
}
if (inj_controls.cmode == Well::InjectorCMode::RATE) {
auto inj_surf_rate = inj_controls.surface_rate;
switch (inj_controls.injector_type) {
case InjectorType::WATER:
assert(pu.phase_used[BlackoilPhases::Aqua]);
this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = inj_surf_rate;
break;
case InjectorType::GAS:
assert(pu.phase_used[BlackoilPhases::Vapour]);
this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = inj_surf_rate;
break;
case InjectorType::OIL:
assert(pu.phase_used[BlackoilPhases::Liquid]);
this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = inj_surf_rate;
break;
case InjectorType::MULTI:
// Not currently handled, keep zero init.
break;
}
}
if (cmode_is_bhp)
this->bhp = bhp_limit;
else
this->bhp = this->perf_data.pressure_first_connection * bhp_safety_factor;
}
void SingleWellState::update_targets(const Well& ecl_well, const SummaryState& st) {
if (this->producer)
this->update_producer_targets(ecl_well, st);
else
this->update_injector_targets(ecl_well, st);
}
}