mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-26 17:20:59 -06:00
280 lines
9.3 KiB
C++
280 lines
9.3 KiB
C++
/*
|
|
Copyright 2021 Equinor ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/simulators/wells/SingleWellState.hpp>
|
|
#include <opm/simulators/wells/PerforationData.hpp>
|
|
|
|
namespace Opm {
|
|
|
|
SingleWellState::SingleWellState(const std::string& name_,
|
|
const ParallelWellInfo& pinfo,
|
|
bool is_producer,
|
|
double pressure_first_connection,
|
|
const std::vector<PerforationData>& perf_input,
|
|
const PhaseUsage& pu_,
|
|
double temp)
|
|
: name(name_)
|
|
, parallel_info(pinfo)
|
|
, producer(is_producer)
|
|
, pu(pu_)
|
|
, temperature(temp)
|
|
, well_potentials(pu_.num_phases)
|
|
, productivity_index(pu_.num_phases)
|
|
, surface_rates(pu_.num_phases)
|
|
, reservoir_rates(pu_.num_phases)
|
|
, perf_data(perf_input.size(), pressure_first_connection, !is_producer, pu_.num_phases)
|
|
, trivial_target(false)
|
|
{
|
|
for (std::size_t perf = 0; perf < perf_input.size(); perf++) {
|
|
this->perf_data.cell_index[perf] = perf_input[perf].cell_index;
|
|
this->perf_data.connection_transmissibility_factor[perf] = perf_input[perf].connection_transmissibility_factor;
|
|
this->perf_data.satnum_id[perf] = perf_input[perf].satnum_id;
|
|
this->perf_data.ecl_index[perf] = perf_input[perf].ecl_index;
|
|
}
|
|
}
|
|
|
|
|
|
void SingleWellState::init_timestep(const SingleWellState& other) {
|
|
if (this->producer != other.producer)
|
|
return;
|
|
|
|
if (this->status == Well::Status::SHUT)
|
|
return;
|
|
|
|
if (other.status == Well::Status::SHUT)
|
|
return;
|
|
|
|
this->bhp = other.bhp;
|
|
this->thp = other.thp;
|
|
this->temperature = other.temperature;
|
|
}
|
|
|
|
|
|
void SingleWellState::shut() {
|
|
this->bhp = 0;
|
|
this->thp = 0;
|
|
this->status = Well::Status::SHUT;
|
|
std::fill(this->surface_rates.begin(), this->surface_rates.end(), 0);
|
|
std::fill(this->reservoir_rates.begin(), this->reservoir_rates.end(), 0);
|
|
std::fill(this->productivity_index.begin(), this->productivity_index.end(), 0);
|
|
|
|
auto& connpi = this->perf_data.prod_index;
|
|
connpi.assign(connpi.size(), 0);
|
|
}
|
|
|
|
void SingleWellState::stop() {
|
|
this->thp = 0;
|
|
this->status = Well::Status::STOP;
|
|
}
|
|
|
|
void SingleWellState::open() {
|
|
this->status = Well::Status::OPEN;
|
|
}
|
|
|
|
void SingleWellState::updateStatus(Well::Status new_status) {
|
|
switch (new_status) {
|
|
case Well::Status::OPEN:
|
|
this->open();
|
|
break;
|
|
case Well::Status::SHUT:
|
|
this->shut();
|
|
break;
|
|
case Well::Status::STOP:
|
|
this->stop();
|
|
break;
|
|
default:
|
|
throw std::logic_error("Invalid well status");
|
|
}
|
|
}
|
|
|
|
void SingleWellState::reset_connection_factors(const std::vector<PerforationData>& new_perf_data) {
|
|
if (this->perf_data.size() != new_perf_data.size()) {
|
|
throw std::invalid_argument {
|
|
"Size mismatch for perforation data in well " + this->name
|
|
};
|
|
}
|
|
|
|
for (std::size_t conn_index = 0; conn_index < new_perf_data.size(); conn_index++) {
|
|
if (this->perf_data.cell_index[conn_index] != static_cast<std::size_t>(new_perf_data[conn_index].cell_index)) {
|
|
throw std::invalid_argument {
|
|
"Cell index mismatch in connection "
|
|
+ std::to_string(conn_index)
|
|
+ " of well "
|
|
+ this->name
|
|
};
|
|
}
|
|
|
|
if (this->perf_data.satnum_id[conn_index] != new_perf_data[conn_index].satnum_id) {
|
|
throw std::invalid_argument {
|
|
"Saturation function table mismatch in connection "
|
|
+ std::to_string(conn_index)
|
|
+ " of well "
|
|
+ this->name
|
|
};
|
|
}
|
|
this->perf_data.connection_transmissibility_factor[conn_index] = new_perf_data[conn_index].connection_transmissibility_factor;
|
|
}
|
|
}
|
|
|
|
|
|
double SingleWellState::sum_connection_rates(const std::vector<double>& connection_rates) const {
|
|
return this->parallel_info.get().sumPerfValues(connection_rates.begin(), connection_rates.end());
|
|
}
|
|
|
|
double SingleWellState::sum_brine_rates() const {
|
|
return this->sum_connection_rates(this->perf_data.brine_rates);
|
|
}
|
|
|
|
|
|
double SingleWellState::sum_polymer_rates() const {
|
|
return this->sum_connection_rates(this->perf_data.polymer_rates);
|
|
}
|
|
|
|
|
|
double SingleWellState::sum_solvent_rates() const {
|
|
return this->sum_connection_rates(this->perf_data.solvent_rates);
|
|
}
|
|
|
|
|
|
void SingleWellState::update_producer_targets(const Well& ecl_well, const SummaryState& st) {
|
|
const double bhp_safety_factor = 0.99;
|
|
const auto& prod_controls = ecl_well.productionControls(st);
|
|
|
|
auto cmode_is_bhp = (prod_controls.cmode == Well::ProducerCMode::BHP);
|
|
auto bhp_limit = prod_controls.bhp_limit;
|
|
|
|
if (ecl_well.getStatus() == Well::Status::STOP) {
|
|
if (cmode_is_bhp)
|
|
this->bhp = bhp_limit;
|
|
else
|
|
this->bhp = this->perf_data.pressure_first_connection;
|
|
|
|
return;
|
|
}
|
|
|
|
switch (prod_controls.cmode) {
|
|
case Well::ProducerCMode::ORAT:
|
|
assert(this->pu.phase_used[BlackoilPhases::Liquid]);
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = -prod_controls.oil_rate;
|
|
break;
|
|
case Well::ProducerCMode::WRAT:
|
|
assert(this->pu.phase_used[BlackoilPhases::Aqua]);
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = -prod_controls.water_rate;
|
|
break;
|
|
case Well::ProducerCMode::GRAT:
|
|
assert(this->pu.phase_used[BlackoilPhases::Vapour]);
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = -prod_controls.gas_rate;
|
|
break;
|
|
case Well::ProducerCMode::GRUP:
|
|
case Well::ProducerCMode::THP:
|
|
case Well::ProducerCMode::BHP:
|
|
if (this->pu.phase_used[BlackoilPhases::Liquid]) {
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = -1000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day;
|
|
}
|
|
if (this->pu.phase_used[BlackoilPhases::Aqua]) {
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = -1000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day;
|
|
}
|
|
if (this->pu.phase_used[BlackoilPhases::Vapour]){
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = -100000.0 * Opm::unit::cubic(Opm::unit::meter) / Opm::unit::day;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// Keep zero init.
|
|
break;
|
|
}
|
|
|
|
if (prod_controls.cmode == Well::ProducerCMode::THP) {
|
|
this->thp = prod_controls.thp_limit;
|
|
}
|
|
|
|
if (cmode_is_bhp)
|
|
this->bhp = bhp_limit;
|
|
else
|
|
this->bhp = this->perf_data.pressure_first_connection * bhp_safety_factor;
|
|
|
|
}
|
|
|
|
void SingleWellState::update_injector_targets(const Well& ecl_well, const SummaryState& st) {
|
|
const double bhp_safety_factor = 1.01;
|
|
const auto& inj_controls = ecl_well.injectionControls(st);
|
|
|
|
if (inj_controls.hasControl(Well::InjectorCMode::THP))
|
|
this->thp = inj_controls.thp_limit;
|
|
|
|
auto cmode_is_bhp = (inj_controls.cmode == Well::InjectorCMode::BHP);
|
|
auto bhp_limit = inj_controls.bhp_limit;
|
|
|
|
if (ecl_well.getStatus() == Well::Status::STOP) {
|
|
if (cmode_is_bhp)
|
|
this->bhp = bhp_limit;
|
|
else
|
|
this->bhp = this->perf_data.pressure_first_connection;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
if (inj_controls.cmode == Well::InjectorCMode::GRUP) {
|
|
this->bhp = this->perf_data.pressure_first_connection * bhp_safety_factor;
|
|
return;
|
|
}
|
|
|
|
if (inj_controls.cmode == Well::InjectorCMode::RATE) {
|
|
auto inj_surf_rate = inj_controls.surface_rate;
|
|
switch (inj_controls.injector_type) {
|
|
case InjectorType::WATER:
|
|
assert(pu.phase_used[BlackoilPhases::Aqua]);
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = inj_surf_rate;
|
|
break;
|
|
case InjectorType::GAS:
|
|
assert(pu.phase_used[BlackoilPhases::Vapour]);
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = inj_surf_rate;
|
|
break;
|
|
case InjectorType::OIL:
|
|
assert(pu.phase_used[BlackoilPhases::Liquid]);
|
|
this->surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = inj_surf_rate;
|
|
break;
|
|
case InjectorType::MULTI:
|
|
// Not currently handled, keep zero init.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cmode_is_bhp)
|
|
this->bhp = bhp_limit;
|
|
else
|
|
this->bhp = this->perf_data.pressure_first_connection * bhp_safety_factor;
|
|
}
|
|
|
|
void SingleWellState::update_targets(const Well& ecl_well, const SummaryState& st) {
|
|
if (this->producer)
|
|
this->update_producer_targets(ecl_well, st);
|
|
else
|
|
this->update_injector_targets(ecl_well, st);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|