opm-simulators/opm/simulators/wells/BlackoilWellModel.hpp
Bård Skaflestad a6c374a27c Compute Well-Level PI For Shut Wells
This commit includes the shut wells in 'wells_ecl_' and expands the
PI/II value calculation to apply to those shut wells too.  With this
in place we are able to run cases that have a 'WELPI' keyword before
the well opens, even at the very first report step.
2021-04-27 14:51:18 +02:00

669 lines
28 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <cassert>
#include <functional>
#include <map>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>
#include <stddef.h>
#include <opm/parser/eclipse/EclipseState/Runspec.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellTestState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GuideRate.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/Group.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GConSale.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/simulators/flow/countGlobalCells.hpp>
#include <opm/simulators/wells/GasLiftSingleWell.hpp>
#include <opm/simulators/wells/GasLiftStage2.hpp>
#include <opm/simulators/wells/GasLiftWellState.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/VFPInjProperties.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/WGState.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/WellInterface.hpp>
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/MultisegmentWell.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/wells/WellProdIndexCalculator.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/timestepping/gatherConvergenceReport.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
namespace Opm::Properties {
template<class TypeTag, class MyTypeTag>
struct EnableTerminalOutput {
using type = UndefinedProperty;
};
} // namespace Opm::Properties
namespace Opm {
/// Class for handling the blackoil well model.
template<typename TypeTag>
class BlackoilWellModel : public Opm::BaseAuxiliaryModule<TypeTag>
{
public:
// --------- Types ---------
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
typedef typename Opm::BaseAuxiliaryModule<TypeTag>::NeighborSet NeighborSet;
using GasLiftSingleWell = Opm::GasLiftSingleWell<TypeTag>;
using GasLiftStage2 = Opm::GasLiftStage2<TypeTag>;
using GLiftWellState = Opm::GasLiftWellState<TypeTag>;
using GLiftWellStateMap =
std::map<std::string,std::unique_ptr<GLiftWellState>>;
using GLiftOptWells =
std::map<std::string,std::unique_ptr<GasLiftSingleWell>>;
using GLiftProdWells =
std::map<std::string,const WellInterface<TypeTag> *>;
static const int numEq = Indices::numEq;
static const int solventSaturationIdx = Indices::solventSaturationIdx;
static constexpr bool has_solvent_ = getPropValue<TypeTag, Properties::EnableSolvent>();
static constexpr bool has_polymer_ = getPropValue<TypeTag, Properties::EnablePolymer>();
static constexpr bool has_energy_ = getPropValue<TypeTag, Properties::EnableEnergy>();
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
typedef Opm::BlackOilPolymerModule<TypeTag> PolymerModule;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
BlackoilWellModel(Simulator& ebosSimulator);
void init();
/////////////
// <eWoms auxiliary module stuff>
/////////////
unsigned numDofs() const
// No extra dofs are inserted for wells. (we use a Schur complement.)
{ return 0; }
void addNeighbors(std::vector<NeighborSet>& neighbors) const;
void applyInitial()
{}
void linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res);
void postSolve(GlobalEqVector& deltaX)
{
recoverWellSolutionAndUpdateWellState(deltaX);
}
/////////////
// </ eWoms auxiliary module stuff>
/////////////
template <class Restarter>
void deserialize(Restarter& /* res */)
{
// TODO (?)
}
/*!
* \brief This method writes the complete state of the well
* to the harddisk.
*/
template <class Restarter>
void serialize(Restarter& /* res*/)
{
// TODO (?)
}
void beginEpisode()
{
beginReportStep(ebosSimulator_.episodeIndex());
}
void beginTimeStep();
void beginIteration()
{
assemble(ebosSimulator_.model().newtonMethod().numIterations(),
ebosSimulator_.timeStepSize());
}
void endIteration()
{ }
void endTimeStep()
{
timeStepSucceeded(ebosSimulator_.time(), ebosSimulator_.timeStepSize());
}
void endEpisode()
{
endReportStep();
}
template <class Context>
void computeTotalRatesForDof(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const;
using WellInterfacePtr = std::shared_ptr<WellInterface<TypeTag> >;
WellInterfacePtr well(const std::string& wellName) const;
void initFromRestartFile(const RestartValue& restartValues);
Opm::data::GroupAndNetworkValues
groupAndNetworkData(const int reportStepIdx, const Opm::Schedule& sched) const
{
auto grp_nwrk_values = ::Opm::data::GroupAndNetworkValues{};
this->assignGroupValues(reportStepIdx, sched, grp_nwrk_values.groupData);
this->assignNodeValues(grp_nwrk_values.nodeData);
return grp_nwrk_values;
}
/*
The dynamic state of the well model is maintained with an instance
of the WellStateFullyImplicitBlackoil class. Currently we have
three different wellstate instances:
1. The currently active wellstate is in the active_well_state_
member. That is the state which is mutated by the simulator.
2. In the case timestep fails to converge and we must go back and
try again with a smaller timestep we need to recover the last
valid wellstate. This is maintained with the
last_valid_well_state_ member and the functions
commitWellState() and resetWellState().
3. For the NUPCOL functionality we should either use the
currently active wellstate or a wellstate frozen at max
nupcol iterations. This is handled with the member
nupcol_well_state_ and the initNupcolWellState() function.
*/
/*
Immutable version of the currently active wellstate.
*/
const WellStateFullyImplicitBlackoil& wellState() const
{
return this->active_wgstate_.well_state;
}
/*
Mutable version of the currently active wellstate.
*/
WellStateFullyImplicitBlackoil& wellState()
{
return this->active_wgstate_.well_state;
}
/*
Will return the last good wellstate. This is typcially used when
initializing a new report step where the Schedule object might
have introduced new wells. The wellstate returned by
prevWellState() must have been stored with the commitWellState()
function first.
*/
const WellStateFullyImplicitBlackoil& prevWellState() const
{
return this->last_valid_wgstate_.well_state;
}
const WGState& prevWGState() const
{
return this->last_valid_wgstate_;
}
/*
Will return the currently active nupcolWellState; must initialize
the internal nupcol wellstate with initNupcolWellState() first.
*/
const WellStateFullyImplicitBlackoil& nupcolWellState() const
{
return this->nupcol_wgstate_.well_state;
}
/*
Will assign the internal member last_valid_well_state_ to the
current value of the this->active_well_state_. The state stored
with storeWellState() can then subsequently be recovered with the
resetWellState() method.
*/
void commitWGState()
{
this->last_valid_wgstate_ = this->active_wgstate_;
}
/*
Will store a copy of the input argument well_state in the
last_valid_well_state_ member, that state can then be recovered
with a subsequent call to resetWellState().
*/
void commitWGState(WGState wgstate)
{
this->last_valid_wgstate_ = std::move(wgstate);
}
/*
Will update the internal variable active_well_state_ to whatever
was stored in the last_valid_well_state_ member. This function
works in pair with commitWellState() which should be called first.
*/
void resetWGState()
{
this->active_wgstate_ = this->last_valid_wgstate_;
}
/*
Will store the current active wellstate in the nupcol_well_state_
member. This can then be subsequently retrieved with accessor
nupcolWellState().
*/
void updateNupcolWGState()
{
this->nupcol_wgstate_ = this->active_wgstate_;
}
const GroupState& groupState() const
{
return this->active_wgstate_.group_state;
}
Opm::data::Wells wellData() const
{
auto wsrpt = this->wellState().report(Opm::UgGridHelpers::globalCell(grid()),
[this](const int well_ndex) -> bool
{
return this->wasDynamicallyShutThisTimeStep(well_ndex);
});
this->assignWellGuideRates(wsrpt);
this->assignShutConnections(wsrpt);
return wsrpt;
}
// substract Binv(D)rw from r;
void apply( BVector& r) const;
// subtract B*inv(D)*C * x from A*x
void apply(const BVector& x, BVector& Ax) const;
#if HAVE_CUDA || HAVE_OPENCL
// accumulate the contributions of all Wells in the WellContributions object
void getWellContributions(WellContributions& x) const;
#endif
// apply well model with scaling of alpha
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
// Check if well equations is converged.
ConvergenceReport getWellConvergence(const std::vector<Scalar>& B_avg, const bool checkGroupConvergence = false) const;
const PhaseUsage& phaseUsage() const { return phase_usage_; }
const SimulatorReportSingle& lastReport() const;
void addWellContributions(SparseMatrixAdapter& jacobian) const
{
for ( const auto& well: well_container_ ) {
well->addWellContributions(jacobian);
}
}
// called at the beginning of a report step
void beginReportStep(const int time_step);
/// Return true if any well has a THP constraint.
bool hasTHPConstraints() const;
/// Shut down any single well, but only if it is in prediction mode.
/// Returns true if the well was actually found and shut.
bool forceShutWellByNameIfPredictionMode(const std::string& wellname, const double simulation_time);
void updateEclWells(const int timeStepIdx, const std::unordered_set<std::string>& wells);
bool hasWell(const std::string& wname);
double wellPI(const int well_index) const;
double wellPI(const std::string& well_name) const;
void updatePerforationIntensiveQuantities();
// it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation()
// makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions
// twice at the beginning of the time step
/// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated
/// at the beginning of the time step and no derivatives are included in these quantities
void calculateExplicitQuantities(Opm::DeferredLogger& deferred_logger) const;
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
void prepareTimeStep(Opm::DeferredLogger& deferred_logger);
void initPrimaryVariablesEvaluation() const;
void updateWellControls(Opm::DeferredLogger& deferred_logger, const bool checkGroupControls);
WellInterfacePtr getWell(const std::string& well_name) const;
protected:
Simulator& ebosSimulator_;
std::vector< Well > wells_ecl_{};
std::vector< std::vector<PerforationData> > well_perf_data_{};
std::vector< WellProdIndexCalculator > prod_index_calc_{};
std::vector<int> local_shut_wells_{};
std::vector< ParallelWellInfo > parallel_well_info_;
std::vector< ParallelWellInfo* > local_parallel_well_info_;
bool wells_active_{false};
// a vector of all the wells.
std::vector<WellInterfacePtr > well_container_{};
// Map from logically cartesian cell indices to compressed ones.
// Cells not in the interior are not mapped. This deactivates
// these for distributed wells and makes the distribution non-overlapping.
std::vector<int> cartesian_to_compressed_{};
std::vector<bool> is_cell_perforated_{};
std::function<bool(const Well&)> not_on_process_{};
void initializeWellProdIndCalculators();
void initializeWellPerfData();
void initializeWellState(const int timeStepIdx,
const int globalNumWells,
const SummaryState& summaryState);
// create the well container
std::vector<WellInterfacePtr > createWellContainer(const int time_step);
void inferLocalShutWells();
WellInterfacePtr
createWellPointer(const int wellID,
const int time_step) const;
template <typename WellType>
std::unique_ptr<WellType>
createTypedWellPointer(const int wellID,
const int time_step) const;
WellInterfacePtr createWellForWellTest(const std::string& well_name, const int report_step, Opm::DeferredLogger& deferred_logger) const;
const ModelParameters param_;
bool terminal_output_{false};
std::vector<int> pvt_region_idx_{};
PhaseUsage phase_usage_;
size_t global_num_cells_{};
// the number of the cells in the local grid
size_t local_num_cells_{};
double gravity_{};
std::vector<double> depth_{};
bool initial_step_{};
bool report_step_starts_{};
bool glift_debug = false;
bool alternative_well_rate_init_{};
std::optional<int> last_run_wellpi_{};
std::unique_ptr<RateConverterType> rateConverter_{};
std::unique_ptr<VFPProperties> vfp_properties_{};
SimulatorReportSingle last_report_{};
WellTestState wellTestState_{};
std::unique_ptr<GuideRate> guideRate_{};
std::map<std::string, double> node_pressures_{}; // Storing network pressures for output.
mutable std::unordered_set<std::string> closed_this_step_{};
// used to better efficiency of calcuation
mutable BVector scaleAddRes_{};
std::vector<Scalar> B_avg_{};
const Grid& grid() const
{ return ebosSimulator_.vanguard().grid(); }
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
const Schedule& schedule() const
{ return ebosSimulator_.vanguard().schedule(); }
void gliftDebug(
const std::string &msg,
Opm::DeferredLogger& deferred_logger) const;
/// \brief Get the wells of our partition that are not shut.
/// \param timeStepIdx The index of the time step.
/// \param[out] globalNumWells the number of wells globally.
std::vector< Well > getLocalWells(const int timeStepIdx,
int& globalNumWells) const;
/// \brief Create the parallel well information
/// \param localWells The local wells from ECL schedule
std::vector< ParallelWellInfo* >
createLocalParallelWellInfo(const std::vector<Well>& localWells);
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
void assemble(const int iterationIdx,
const double dt);
// called at the end of a time step
void timeStepSucceeded(const double& simulationTime, const double dt);
// called at the end of a report step
void endReportStep();
// using the solution x to recover the solution xw for wells and applying
// xw to update Well State
void recoverWellSolutionAndUpdateWellState(const BVector& x);
void updateAndCommunicateGroupData();
void updateNetworkPressures();
// setting the well_solutions_ based on well_state.
void updatePrimaryVariables(Opm::DeferredLogger& deferred_logger);
void setupCartesianToCompressed_(const int* global_cell, int local_num__cells);
void setRepRadiusPerfLength();
void updateAverageFormationFactor();
// Calculating well potentials for each well
void computeWellPotentials(std::vector<double>& well_potentials, const int reportStepIdx, Opm::DeferredLogger& deferred_logger);
const std::vector<double>& wellPerfEfficiencyFactors() const;
void calculateEfficiencyFactors(const int reportStepIdx);
void calculateProductivityIndexValuesShutWells(const int reportStepIdx, DeferredLogger& deferred_logger);
void calculateProductivityIndexValues(DeferredLogger& deferred_logger);
void calculateProductivityIndexValues(const WellInterface<TypeTag>* wellPtr,
DeferredLogger& deferred_logger);
// The number of components in the model.
int numComponents() const;
int numLocalWells() const;
int numPhases() const;
int reportStepIndex() const;
void assembleWellEq(const double dt, Opm::DeferredLogger& deferred_logger);
void maybeDoGasLiftOptimize(Opm::DeferredLogger& deferred_logger);
void gliftDebugShowALQ(Opm::DeferredLogger& deferred_logger);
void gasLiftOptimizationStage2(Opm::DeferredLogger& deferred_logger,
GLiftProdWells &prod_wells, GLiftOptWells &glift_wells,
GLiftWellStateMap &map);
void extractLegacyCellPvtRegionIndex_();
void extractLegacyDepth_();
/// return true if wells are available in the reservoir
bool wellsActive() const;
void setWellsActive(const bool wells_active);
/// return true if wells are available on this process
bool localWellsActive() const;
/// upate the wellTestState related to economic limits
void updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const;
void wellTesting(const int timeStepIdx, const double simulationTime, Opm::DeferredLogger& deferred_logger);
// convert well data from opm-common to well state from opm-core
void loadRestartData( const data::Wells& wells,
const data::GroupAndNetworkValues& grpNwrkValues,
const PhaseUsage& phases,
const bool handle_ms_well,
WellStateFullyImplicitBlackoil& state );
// whether there exists any multisegment well open on this process
bool anyMSWellOpenLocal() const;
const Well& getWellEcl(const std::string& well_name) const;
void updateGroupIndividualControls(Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups);
void updateGroupIndividualControl(const Group& group, Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups);
bool checkGroupConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const;
Group::ProductionCMode checkGroupProductionConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const;
Group::InjectionCMode checkGroupInjectionConstraints(const Group& group, const Phase& phase) const;
void checkGconsaleLimits(const Group& group, WellState& well_state, Opm::DeferredLogger& deferred_logger );
void updateGroupHigherControls(Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups);
void checkGroupHigherConstraints(const Group& group, Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups);
void actionOnBrokenConstraints(const Group& group, const Group::ExceedAction& exceed_action, const Group::ProductionCMode& newControl, Opm::DeferredLogger& deferred_logger);
void actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& topUpPhase, Opm::DeferredLogger& deferred_logger);
void updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState);
void setWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, double wsolvent);
void runWellPIScaling(const int timeStepIdx, DeferredLogger& local_deferredLogger);
bool wasDynamicallyShutThisTimeStep(const int well_index) const;
void assignWellGuideRates(data::Wells& wsrpt) const;
void assignShutConnections(data::Wells& wsrpt) const;
void assignGroupValues(const int reportStepIdx,
const Schedule& sched,
std::map<std::string, data::GroupData>& gvalues) const;
void assignNodeValues(std::map<std::string, data::NodeData>& gvalues) const;
std::unordered_map<std::string, data::GroupGuideRates>
calculateAllGroupGuiderates(const int reportStepIdx, const Schedule& sched) const;
void assignGroupControl(const Group& group, data::GroupData& gdata) const;
data::GuideRateValue getGuideRateValues(const Well& well) const;
data::GuideRateValue getGuideRateValues(const Group& group) const;
data::GuideRateValue getGuideRateInjectionGroupValues(const Group& group) const;
void getGuideRateValues(const GuideRate::RateVector& qs,
const bool is_inj,
const std::string& wgname,
data::GuideRateValue& grval) const;
void assignGroupGuideRates(const Group& group,
const std::unordered_map<std::string, data::GroupGuideRates>& groupGuideRates,
data::GroupData& gdata) const;
void computeWellTemperature();
private:
GroupState& groupState() { return this->active_wgstate_.group_state; }
BlackoilWellModel(Simulator& ebosSimulator, const PhaseUsage& pu);
/*
The various wellState members should be accessed and modified
through the accessor functions wellState(), prevWellState(),
commitWellState(), resetWellState(), nupcolWellState() and
updateNupcolWellState().
*/
WGState active_wgstate_;
WGState last_valid_wgstate_;
WGState nupcol_wgstate_;
};
} // namespace Opm
#include "BlackoilWellModel_impl.hpp"
#endif