mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 05:02:58 -06:00
339 lines
12 KiB
C++
339 lines
12 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::FlashModel
|
|
*/
|
|
#ifndef EWOMS_FLASH_MODEL_HH
|
|
#define EWOMS_FLASH_MODEL_HH
|
|
|
|
#include <opm/material/densead/Math.hpp>
|
|
|
|
#include "flashproperties.hh"
|
|
#include "flashprimaryvariables.hh"
|
|
#include "flashlocalresidual.hh"
|
|
#include "flashratevector.hh"
|
|
#include "flashboundaryratevector.hh"
|
|
#include "flashintensivequantities.hh"
|
|
#include "flashextensivequantities.hh"
|
|
#include "flashindices.hh"
|
|
|
|
#include <opm/models/common/multiphasebasemodel.hh>
|
|
#include <opm/models/common/energymodule.hh>
|
|
#include <opm/models/io/vtkcompositionmodule.hh>
|
|
#include <opm/models/io/vtkenergymodule.hh>
|
|
#include <opm/models/io/vtkdiffusionmodule.hh>
|
|
#include <opm/material/fluidmatrixinteractions/NullMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/constraintsolvers/NcpFlash.hpp>
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class FlashModel;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
//! The type tag for the isothermal single phase problems
|
|
struct FlashModel { using InheritsFrom = std::tuple<VtkDiffusion,
|
|
VtkEnergy,
|
|
VtkComposition,
|
|
MultiPhaseBaseModel>; };
|
|
} // namespace TTag
|
|
|
|
//! Use the FlashLocalResidual function for the flash model
|
|
template<class TypeTag>
|
|
struct LocalResidual<TypeTag, TTag::FlashModel> { using type = Opm::FlashLocalResidual<TypeTag>; };
|
|
|
|
//! Use the NCP flash solver by default
|
|
template<class TypeTag>
|
|
struct FlashSolver<TypeTag, TTag::FlashModel>
|
|
{ using type = Opm::NcpFlash<GetPropType<TypeTag, Properties::Scalar>,
|
|
GetPropType<TypeTag, Properties::FluidSystem>>; };
|
|
|
|
//! Let the flash solver choose its tolerance by default
|
|
template<class TypeTag>
|
|
struct FlashTolerance<TypeTag, TTag::FlashModel>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = -1.0;
|
|
};
|
|
|
|
//! the Model property
|
|
template<class TypeTag>
|
|
struct Model<TypeTag, TTag::FlashModel> { using type = Opm::FlashModel<TypeTag>; };
|
|
|
|
//! the PrimaryVariables property
|
|
template<class TypeTag>
|
|
struct PrimaryVariables<TypeTag, TTag::FlashModel> { using type = Opm::FlashPrimaryVariables<TypeTag>; };
|
|
|
|
//! the RateVector property
|
|
template<class TypeTag>
|
|
struct RateVector<TypeTag, TTag::FlashModel> { using type = Opm::FlashRateVector<TypeTag>; };
|
|
|
|
//! the BoundaryRateVector property
|
|
template<class TypeTag>
|
|
struct BoundaryRateVector<TypeTag, TTag::FlashModel> { using type = Opm::FlashBoundaryRateVector<TypeTag>; };
|
|
|
|
//! the IntensiveQuantities property
|
|
template<class TypeTag>
|
|
struct IntensiveQuantities<TypeTag, TTag::FlashModel> { using type = Opm::FlashIntensiveQuantities<TypeTag>; };
|
|
|
|
//! the ExtensiveQuantities property
|
|
template<class TypeTag>
|
|
struct ExtensiveQuantities<TypeTag, TTag::FlashModel> { using type = Opm::FlashExtensiveQuantities<TypeTag>; };
|
|
|
|
//! The indices required by the flash-baseed isothermal compositional model
|
|
template<class TypeTag>
|
|
struct Indices<TypeTag, TTag::FlashModel> { using type = Opm::FlashIndices<TypeTag, /*PVIdx=*/0>; };
|
|
|
|
// The updates of intensive quantities tend to be _very_ expensive for this
|
|
// model, so let's try to minimize the number of required ones
|
|
template<class TypeTag>
|
|
struct EnableIntensiveQuantityCache<TypeTag, TTag::FlashModel> { static constexpr bool value = true; };
|
|
|
|
// since thermodynamic hints are basically free if the cache for intensive quantities is
|
|
// enabled, and this model usually shows quite a performance improvment if they are
|
|
// enabled, let's enable them by default.
|
|
template<class TypeTag>
|
|
struct EnableThermodynamicHints<TypeTag, TTag::FlashModel> { static constexpr bool value = true; };
|
|
|
|
// disable molecular diffusion by default
|
|
template<class TypeTag>
|
|
struct EnableDiffusion<TypeTag, TTag::FlashModel> { static constexpr bool value = false; };
|
|
|
|
//! Disable the energy equation by default
|
|
template<class TypeTag>
|
|
struct EnableEnergy<TypeTag, TTag::FlashModel> { static constexpr bool value = false; };
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup FlashModel
|
|
*
|
|
* \brief A compositional multi-phase model based on flash-calculations
|
|
*
|
|
* This model assumes a flow of \f$M \geq 1\f$ fluid phases
|
|
* \f$\alpha\f$, each of which is assumed to be a mixture \f$N \geq
|
|
* M\f$ chemical species (denoted by the upper index \f$\kappa\f$).
|
|
*
|
|
* By default, the standard multi-phase Darcy approach is used to determine
|
|
* the velocity, i.e.
|
|
* \f[
|
|
* \mathbf{v}_\alpha =
|
|
* - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K}
|
|
* \left(\mathbf{grad}\, p_\alpha
|
|
* - \varrho_{\alpha} \mathbf{g} \right) \;,
|
|
* \f]
|
|
* although the actual approach which is used can be specified via the
|
|
* \c FluxModule property. For example, the velocity model can by
|
|
* changed to the Forchheimer approach by
|
|
* \code
|
|
* template<class TypeTag>
|
|
struct FluxModule<TypeTag, TTag::MyProblemTypeTag> { using type = Opm::ForchheimerFluxModule<TypeTag>; };
|
|
* \endcode
|
|
*
|
|
* The core of the model is the conservation mass of each component by
|
|
* means of the equation
|
|
* \f[
|
|
* \sum_\alpha \frac{\partial\;\phi c_\alpha^\kappa S_\alpha }{\partial t}
|
|
* - \sum_\alpha \mathrm{div} \left\{ c_\alpha^\kappa \mathbf{v}_\alpha \right\}
|
|
* - q^\kappa = 0 \;.
|
|
* \f]
|
|
*
|
|
* To determine the quanties that occur in the equations above, this
|
|
* model uses <i>flash calculations</i>. A flash solver starts with
|
|
* the total mass or molar mass per volume for each component and,
|
|
* calculates the compositions, saturations and pressures of all
|
|
* phases at a given temperature. For this the flash solver has to use
|
|
* some model assumptions internally. (Often these are the same
|
|
* primary variable switching or NCP assumptions as used by the other
|
|
* fully implicit compositional multi-phase models provided by eWoms.)
|
|
*
|
|
* Using flash calculations for the flow model has some disadvantages:
|
|
* - The accuracy of the flash solver needs to be sufficient to
|
|
* calculate the parital derivatives using numerical differentiation
|
|
* which are required for the Newton scheme.
|
|
* - Flash calculations tend to be quite computationally expensive and
|
|
* are often numerically unstable.
|
|
*
|
|
* It is thus adviced to increase the target tolerance of the Newton
|
|
* scheme or a to use type for scalar values which exhibits higher
|
|
* precision than the standard \c double (e.g. \c quad) if this model
|
|
* ought to be used.
|
|
*
|
|
* The model uses the following primary variables:
|
|
* - The total molar concentration of each component:
|
|
* \f$c^\kappa = \sum_\alpha S_\alpha x_\alpha^\kappa \rho_{mol, \alpha}\f$
|
|
* - The absolute temperature $T$ in Kelvins if the energy equation enabled.
|
|
*/
|
|
template <class TypeTag>
|
|
class FlashModel
|
|
: public MultiPhaseBaseModel<TypeTag>
|
|
{
|
|
using ParentType = MultiPhaseBaseModel<TypeTag>;
|
|
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
enum { enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
|
|
|
|
using EnergyModule = Opm::EnergyModule<TypeTag, enableEnergy>;
|
|
|
|
public:
|
|
FlashModel(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the immiscible model.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
// register runtime parameters of the VTK output modules
|
|
Opm::VtkCompositionModule<TypeTag>::registerParameters();
|
|
|
|
if (enableDiffusion)
|
|
Opm::VtkDiffusionModule<TypeTag>::registerParameters();
|
|
|
|
if (enableEnergy)
|
|
Opm::VtkEnergyModule<TypeTag>::registerParameters();
|
|
|
|
EWOMS_REGISTER_PARAM(TypeTag, Scalar, FlashTolerance,
|
|
"The maximum tolerance for the flash solver to "
|
|
"consider the solution converged");
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::name
|
|
*/
|
|
static std::string name()
|
|
{ return "flash"; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::primaryVarName
|
|
*/
|
|
std::string primaryVarName(unsigned pvIdx) const
|
|
{
|
|
const std::string& tmp = EnergyModule::primaryVarName(pvIdx);
|
|
if (tmp != "")
|
|
return tmp;
|
|
|
|
std::ostringstream oss;
|
|
if (Indices::cTot0Idx <= pvIdx && pvIdx < Indices::cTot0Idx
|
|
+ numComponents)
|
|
oss << "c_tot," << FluidSystem::componentName(/*compIdx=*/pvIdx
|
|
- Indices::cTot0Idx);
|
|
else
|
|
assert(false);
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::eqName
|
|
*/
|
|
std::string eqName(unsigned eqIdx) const
|
|
{
|
|
const std::string& tmp = EnergyModule::eqName(eqIdx);
|
|
if (tmp != "")
|
|
return tmp;
|
|
|
|
std::ostringstream oss;
|
|
if (Indices::conti0EqIdx <= eqIdx && eqIdx < Indices::conti0EqIdx
|
|
+ numComponents) {
|
|
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
|
|
oss << "continuity^" << FluidSystem::componentName(compIdx);
|
|
}
|
|
else
|
|
assert(false);
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::primaryVarWeight
|
|
*/
|
|
Scalar primaryVarWeight(unsigned globalDofIdx, unsigned pvIdx) const
|
|
{
|
|
Scalar tmp = EnergyModule::primaryVarWeight(*this, globalDofIdx, pvIdx);
|
|
if (tmp > 0)
|
|
return tmp;
|
|
|
|
unsigned compIdx = pvIdx - Indices::cTot0Idx;
|
|
|
|
// make all kg equal. also, divide the weight of all total
|
|
// compositions by 100 to make the relative errors more
|
|
// comparable to the ones of the other models (at 10% porosity
|
|
// the medium is fully saturated with water at atmospheric
|
|
// conditions if 100 kg/m^3 are present!)
|
|
return FluidSystem::molarMass(compIdx) / 100.0;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseDiscretization::eqWeight
|
|
*/
|
|
Scalar eqWeight(unsigned globalDofIdx, unsigned eqIdx) const
|
|
{
|
|
Scalar tmp = EnergyModule::eqWeight(*this, globalDofIdx, eqIdx);
|
|
if (tmp > 0)
|
|
return tmp;
|
|
|
|
unsigned compIdx = eqIdx - Indices::conti0EqIdx;
|
|
|
|
// make all kg equal
|
|
return FluidSystem::molarMass(compIdx);
|
|
}
|
|
|
|
void registerOutputModules_()
|
|
{
|
|
ParentType::registerOutputModules_();
|
|
|
|
// add the VTK output modules which are meaningful for the model
|
|
this->addOutputModule(new Opm::VtkCompositionModule<TypeTag>(this->simulator_));
|
|
if (enableDiffusion)
|
|
this->addOutputModule(new Opm::VtkDiffusionModule<TypeTag>(this->simulator_));
|
|
if (enableEnergy)
|
|
this->addOutputModule(new Opm::VtkEnergyModule<TypeTag>(this->simulator_));
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|