mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-17 23:12:58 -06:00
54c07f3d0c
The following is changed in this commit: - The constructor for NewtonIterationBlackoilSimple now takes a parameter object instead of a linear solver. - The fully implicit black-oil simulators can now use the CPR preconditioning strategy (by passing use_cpr=true) or the simple strategy (the default). Note that as of this commit, the CPR preconditioning still has not been implemented properly, and behaves just like the simple strategy.
71 lines
2.8 KiB
C++
71 lines
2.8 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/NewtonIterationBlackoilSimple.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/linalg/LinearSolverFactory.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
/// Construct a system solver.
|
|
/// \param[in] linsolver linear solver to use
|
|
NewtonIterationBlackoilSimple::NewtonIterationBlackoilSimple(const parameter::ParameterGroup& param)
|
|
{
|
|
linsolver_.reset(new LinearSolverFactory(param));
|
|
}
|
|
|
|
/// Solve the linear system Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] residual residual object containing A and b.
|
|
/// \return the solution x
|
|
NewtonIterationBlackoilSimple::SolutionVector
|
|
NewtonIterationBlackoilSimple::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
|
|
{
|
|
typedef LinearisedBlackoilResidual::ADB ADB;
|
|
const int np = residual.material_balance_eq.size();
|
|
ADB mass_res = residual.material_balance_eq[0];
|
|
for (int phase = 1; phase < np; ++phase) {
|
|
mass_res = vertcat(mass_res, residual.material_balance_eq[phase]);
|
|
}
|
|
const ADB well_res = vertcat(residual.well_flux_eq, residual.well_eq);
|
|
const ADB total_residual = collapseJacs(vertcat(mass_res, well_res));
|
|
|
|
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual.derivative()[0];
|
|
|
|
SolutionVector dx(SolutionVector::Zero(total_residual.size()));
|
|
Opm::LinearSolverInterface::LinearSolverReport rep
|
|
= linsolver_->solve(matr.rows(), matr.nonZeros(),
|
|
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
|
total_residual.value().data(), dx.data());
|
|
if (!rep.converged) {
|
|
OPM_THROW(std::runtime_error,
|
|
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
|
|
"Linear solver convergence failure.");
|
|
}
|
|
return dx;
|
|
}
|
|
|
|
} // namespace Opm
|
|
|