mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-22 00:42:59 -06:00
272 lines
11 KiB
C++
272 lines
11 KiB
C++
/*
|
|
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_AQUIFERCT_HEADER_INCLUDED
|
|
#define OPM_AQUIFERCT_HEADER_INCLUDED
|
|
|
|
#include <opm/simulators/aquifers/AquiferInterface.hpp>
|
|
|
|
#include <opm/output/data/Aquifer.hpp>
|
|
|
|
#include <exception>
|
|
#include <stdexcept>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template <typename TypeTag>
|
|
class AquiferCarterTracy : public AquiferInterface<TypeTag>
|
|
{
|
|
public:
|
|
typedef AquiferInterface<TypeTag> Base;
|
|
|
|
using typename Base::BlackoilIndices;
|
|
using typename Base::ElementContext;
|
|
using typename Base::Eval;
|
|
using typename Base::FluidState;
|
|
using typename Base::FluidSystem;
|
|
using typename Base::IntensiveQuantities;
|
|
using typename Base::RateVector;
|
|
using typename Base::Scalar;
|
|
using typename Base::Simulator;
|
|
using typename Base::ElementMapper;
|
|
|
|
using Base::waterCompIdx;
|
|
using Base::waterPhaseIdx;
|
|
AquiferCarterTracy(const std::vector<Aquancon::AquancCell>& connections,
|
|
const Simulator& ebosSimulator,
|
|
const AquiferCT::AQUCT_data& aquct_data)
|
|
: Base(aquct_data.aquiferID, connections, ebosSimulator)
|
|
, aquct_data_(aquct_data)
|
|
{
|
|
}
|
|
|
|
void endTimeStep() override
|
|
{
|
|
for (const auto& q : this->Qai_) {
|
|
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
|
|
}
|
|
}
|
|
|
|
Opm::data::AquiferData aquiferData() const
|
|
{
|
|
data::AquiferData data;
|
|
data.aquiferID = this->aquiferID;
|
|
// TODO: not sure how to get this pressure value yet
|
|
data.pressure = this->pa0_;
|
|
data.fluxRate = 0.;
|
|
for (const auto& q : this->Qai_) {
|
|
data.fluxRate += q.value();
|
|
}
|
|
data.volume = this->W_flux_.value();
|
|
data.initPressure = this->pa0_;
|
|
data.type = Opm::data::AquiferType::CarterTracey;
|
|
return data;
|
|
}
|
|
|
|
protected:
|
|
// Variables constants
|
|
const AquiferCT::AQUCT_data aquct_data_;
|
|
Scalar beta_; // Influx constant
|
|
// TODO: it is possible it should be a AD variable
|
|
Scalar mu_w_; // water viscosity
|
|
|
|
// This function is used to initialize and calculate the alpha_i for each grid connection to the aquifer
|
|
inline void initializeConnections() override
|
|
{
|
|
this->cell_depth_.resize(this->size(), this->aquiferDepth());
|
|
this->alphai_.resize(this->size(), 1.0);
|
|
this->faceArea_connected_.resize(this->size(), 0.0);
|
|
|
|
// Translate the C face tag into the enum used by opm-parser's TransMult class
|
|
Opm::FaceDir::DirEnum faceDirection;
|
|
|
|
// denom_face_areas is the sum of the areas connected to an aquifer
|
|
Scalar denom_face_areas = 0.;
|
|
this->cellToConnectionIdx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1);
|
|
for (size_t idx = 0; idx < this->size(); ++idx) {
|
|
const auto global_index = this->connections_[idx].global_index;
|
|
const int cell_index = this->ebos_simulator_.vanguard().compressedIndex(global_index);
|
|
|
|
if (cell_index < 0) //the global_index is not part of this grid
|
|
continue;
|
|
|
|
this->cellToConnectionIdx_[cell_index] = idx;
|
|
this->cell_depth_.at(idx) = this->ebos_simulator_.vanguard().cellCenterDepth(cell_index);
|
|
}
|
|
// get default areas for all intersections
|
|
const auto& gridView = this->ebos_simulator_.vanguard().gridView();
|
|
ElementMapper elemMapper(gridView, Dune::mcmgElementLayout());
|
|
auto elemIt = gridView.template begin</*codim=*/ 0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
unsigned cell_index = elemMapper.index(elem);
|
|
int idx = this->cellToConnectionIdx_[cell_index];
|
|
|
|
// only deal with connections given by the aquifer
|
|
if( idx < 0)
|
|
continue;
|
|
|
|
auto isIt = gridView.ibegin(elem);
|
|
const auto& isEndIt = gridView.iend(elem);
|
|
for (; isIt != isEndIt; ++ isIt) {
|
|
// store intersection, this might be costly
|
|
const auto& intersection = *isIt;
|
|
|
|
// only deal with grid boundaries
|
|
if (!intersection.boundary())
|
|
continue;
|
|
|
|
int insideFaceIdx = intersection.indexInInside();
|
|
switch (insideFaceIdx) {
|
|
case 0:
|
|
faceDirection = Opm::FaceDir::XMinus;
|
|
break;
|
|
case 1:
|
|
faceDirection = Opm::FaceDir::XPlus;
|
|
break;
|
|
case 2:
|
|
faceDirection = Opm::FaceDir::YMinus;
|
|
break;
|
|
case 3:
|
|
faceDirection = Opm::FaceDir::YPlus;
|
|
break;
|
|
case 4:
|
|
faceDirection = Opm::FaceDir::ZMinus;
|
|
break;
|
|
case 5:
|
|
faceDirection = Opm::FaceDir::ZPlus;
|
|
break;
|
|
default:
|
|
OPM_THROW(Opm::NumericalIssue,
|
|
"Initialization of Aquifer Carter Tracy problem. Make sure faceTag is correctly defined");
|
|
}
|
|
|
|
if (faceDirection == this->connections_[idx].face_dir) {
|
|
this->faceArea_connected_[idx] = this->getFaceArea(intersection, idx);
|
|
denom_face_areas += (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx));
|
|
}
|
|
}
|
|
}
|
|
|
|
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
|
|
for (size_t idx = 0; idx < this->size(); ++idx) {
|
|
this->alphai_.at(idx) = (denom_face_areas < eps_sqrt)
|
|
? // Prevent no connection NaNs due to division by zero
|
|
0.
|
|
: (this->connections_[idx].influx_mult * this->faceArea_connected_.at(idx)) / denom_face_areas;
|
|
}
|
|
}
|
|
|
|
void assignRestartData(const data::AquiferData& /* xaq */) override
|
|
{
|
|
throw std::runtime_error {"Restart-based initialization not currently supported "
|
|
"for Carter-Tracey analytic aquifers"};
|
|
}
|
|
|
|
inline void getInfluenceTableValues(Scalar& pitd, Scalar& pitd_prime, const Scalar& td)
|
|
{
|
|
// We use the opm-common numeric linear interpolator
|
|
pitd = Opm::linearInterpolation(aquct_data_.td, aquct_data_.pi, td);
|
|
pitd_prime = Opm::linearInterpolationDerivative(aquct_data_.td, aquct_data_.pi, td);
|
|
}
|
|
|
|
inline Scalar dpai(int idx)
|
|
{
|
|
Scalar dp = this->pa0_
|
|
+ this->rhow_.at(idx).value() * this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth())
|
|
- this->pressure_previous_.at(idx);
|
|
return dp;
|
|
}
|
|
|
|
// This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription
|
|
inline void calculateEqnConstants(Scalar& a, Scalar& b, const int idx, const Simulator& simulator)
|
|
{
|
|
const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_;
|
|
const Scalar td = simulator.time() / this->Tc_;
|
|
Scalar PItdprime = 0.;
|
|
Scalar PItd = 0.;
|
|
getInfluenceTableValues(PItd, PItdprime, td_plus_dt);
|
|
a = 1.0 / this->Tc_ * ((beta_ * dpai(idx)) - (this->W_flux_.value() * PItdprime)) / (PItd - td * PItdprime);
|
|
b = beta_ / (this->Tc_ * (PItd - td * PItdprime));
|
|
}
|
|
|
|
// This function implements Eq 5.7 of the EclipseTechnicalDescription
|
|
inline void calculateInflowRate(int idx, const Simulator& simulator) override
|
|
{
|
|
Scalar a, b;
|
|
calculateEqnConstants(a, b, idx, simulator);
|
|
this->Qai_.at(idx)
|
|
= this->alphai_.at(idx) * (a - b * (this->pressure_current_.at(idx) - this->pressure_previous_.at(idx)));
|
|
}
|
|
|
|
inline void calculateAquiferConstants() override
|
|
{
|
|
// We calculate the influx constant
|
|
beta_ = aquct_data_.c2 * aquct_data_.h * aquct_data_.theta * aquct_data_.phi_aq * aquct_data_.C_t
|
|
* aquct_data_.r_o * aquct_data_.r_o;
|
|
// We calculate the time constant
|
|
this->Tc_ = mu_w_ * aquct_data_.phi_aq * aquct_data_.C_t * aquct_data_.r_o * aquct_data_.r_o
|
|
/ (aquct_data_.k_a * aquct_data_.c1);
|
|
}
|
|
|
|
inline void calculateAquiferCondition() override
|
|
{
|
|
|
|
int pvttableIdx = aquct_data_.pvttableID - 1;
|
|
this->rhow_.resize(this->size(), 0.);
|
|
if (!aquct_data_.p0.first) {
|
|
this->pa0_ = this->calculateReservoirEquilibrium();
|
|
} else {
|
|
this->pa0_ = aquct_data_.p0.second;
|
|
}
|
|
|
|
// use the thermodynamic state of the first active cell as a
|
|
// reference. there might be better ways to do this...
|
|
ElementContext elemCtx(this->ebos_simulator_);
|
|
auto elemIt = this->ebos_simulator_.gridView().template begin</*codim=*/0>();
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
// Initialize a FluidState object first
|
|
FluidState fs_aquifer;
|
|
// We use the temperature of the first cell connected to the aquifer
|
|
// Here we copy the fluidstate of the first cell, so we do not accidentally mess up the reservoir fs
|
|
fs_aquifer.assign(iq0.fluidState());
|
|
Eval temperature_aq, pa0_mean, saltConcentration_aq;
|
|
temperature_aq = fs_aquifer.temperature(0);
|
|
saltConcentration_aq = fs_aquifer.saltConcentration();
|
|
pa0_mean = this->pa0_;
|
|
Eval mu_w_aquifer = FluidSystem::waterPvt().viscosity(pvttableIdx, temperature_aq, pa0_mean, saltConcentration_aq);
|
|
mu_w_ = mu_w_aquifer.value();
|
|
}
|
|
|
|
virtual Scalar aquiferDepth() const override
|
|
{
|
|
return aquct_data_.d0;
|
|
}
|
|
}; // class AquiferCarterTracy
|
|
} // namespace Opm
|
|
|
|
#endif
|