mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-02-25 18:55:30 -06:00
1139 lines
43 KiB
C++
1139 lines
43 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2015 NTNU
|
|
Copyright 2015, 2016, 2017 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILMODEL_IMPL_HEADER_INCLUDED
|
|
#define OPM_BLACKOILMODEL_IMPL_HEADER_INCLUDED
|
|
|
|
#ifndef OPM_BLACKOILMODEL_HEADER_INCLUDED
|
|
#include <config.h>
|
|
#include <opm/simulators/flow/BlackoilModel.hpp>
|
|
#endif
|
|
|
|
#include <dune/common/timer.hh>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
|
|
#include <opm/simulators/flow/countGlobalCells.hpp>
|
|
|
|
#include <opm/simulators/utils/phaseUsageFromDeck.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
#include <stdexcept>
|
|
#include <sstream>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
namespace Opm {
|
|
|
|
template <class TypeTag>
|
|
BlackoilModel<TypeTag>::
|
|
BlackoilModel(Simulator& simulator,
|
|
const ModelParameters& param,
|
|
BlackoilWellModel<TypeTag>& well_model,
|
|
const bool terminal_output)
|
|
: simulator_(simulator)
|
|
, grid_(simulator_.vanguard().grid())
|
|
, phaseUsage_(phaseUsageFromDeck(eclState()))
|
|
, param_( param )
|
|
, well_model_ (well_model)
|
|
, rst_conv_(simulator_.problem().eclWriter()->collectOnIORank().localIdxToGlobalIdxMapping(),
|
|
grid_.comm())
|
|
, terminal_output_ (terminal_output)
|
|
, current_relaxation_(1.0)
|
|
, dx_old_(simulator_.model().numGridDof())
|
|
, conv_monitor_(param_.monitor_params_)
|
|
{
|
|
// compute global sum of number of cells
|
|
global_nc_ = detail::countGlobalCells(grid_);
|
|
convergence_reports_.reserve(300); // Often insufficient, but avoids frequent moves.
|
|
// TODO: remember to fix!
|
|
if (param_.nonlinear_solver_ == "nldd") {
|
|
if (terminal_output) {
|
|
OpmLog::info("Using Non-Linear Domain Decomposition solver (nldd).");
|
|
}
|
|
nlddSolver_ = std::make_unique<BlackoilModelNldd<TypeTag>>(*this);
|
|
} else if (param_.nonlinear_solver_ == "newton") {
|
|
if (terminal_output) {
|
|
OpmLog::info("Using Newton nonlinear solver.");
|
|
}
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Unknown nonlinear solver option: " +
|
|
param_.nonlinear_solver_);
|
|
}
|
|
}
|
|
|
|
template <class TypeTag>
|
|
SimulatorReportSingle
|
|
BlackoilModel<TypeTag>::
|
|
prepareStep(const SimulatorTimerInterface& timer)
|
|
{
|
|
SimulatorReportSingle report;
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
// update the solution variables in the model
|
|
int lastStepFailed = timer.lastStepFailed();
|
|
if (grid_.comm().size() > 1 && lastStepFailed != grid_.comm().min(lastStepFailed)) {
|
|
OPM_THROW(std::runtime_error,
|
|
fmt::format("Misalignment of the parallel simulation run in prepareStep "
|
|
"- the previous step succeeded on rank {} but failed on the "
|
|
"other ranks.", grid_.comm().rank()));
|
|
}
|
|
if (lastStepFailed) {
|
|
simulator_.model().updateFailed();
|
|
}
|
|
else {
|
|
simulator_.model().advanceTimeLevel();
|
|
}
|
|
|
|
// Set the timestep size, episode index, and non-linear iteration index
|
|
// for the model explicitly. The model needs to know the report step/episode index
|
|
// because of timing dependent data despite the fact that flow uses its
|
|
// own time stepper. (The length of the episode does not matter, though.)
|
|
simulator_.setTime(timer.simulationTimeElapsed());
|
|
simulator_.setTimeStepSize(timer.currentStepLength());
|
|
simulator_.model().newtonMethod().setIterationIndex(0);
|
|
|
|
simulator_.problem().beginTimeStep();
|
|
|
|
unsigned numDof = simulator_.model().numGridDof();
|
|
wasSwitched_.resize(numDof);
|
|
std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);
|
|
|
|
if (param_.update_equations_scaling_) {
|
|
OpmLog::error("Equation scaling not supported");
|
|
//updateEquationsScaling();
|
|
}
|
|
|
|
if (nlddSolver_) {
|
|
nlddSolver_->prepareStep();
|
|
}
|
|
|
|
report.pre_post_time += perfTimer.stop();
|
|
|
|
auto getIdx = [](unsigned phaseIdx) -> int
|
|
{
|
|
if (FluidSystem::phaseIsActive(phaseIdx)) {
|
|
const unsigned sIdx = FluidSystem::solventComponentIndex(phaseIdx);
|
|
return Indices::canonicalToActiveComponentIndex(sIdx);
|
|
}
|
|
|
|
return -1;
|
|
};
|
|
const auto& schedule = simulator_.vanguard().schedule();
|
|
rst_conv_.init(simulator_.vanguard().globalNumCells(),
|
|
schedule[timer.reportStepNum()].rst_config(),
|
|
{getIdx(FluidSystem::oilPhaseIdx),
|
|
getIdx(FluidSystem::gasPhaseIdx),
|
|
getIdx(FluidSystem::waterPhaseIdx),
|
|
contiPolymerEqIdx,
|
|
contiBrineEqIdx,
|
|
contiSolventEqIdx});
|
|
|
|
return report;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
void
|
|
BlackoilModel<TypeTag>::
|
|
initialLinearization(SimulatorReportSingle& report,
|
|
const int iteration,
|
|
const int minIter,
|
|
const int maxIter,
|
|
const SimulatorTimerInterface& timer)
|
|
{
|
|
// ----------- Set up reports and timer -----------
|
|
failureReport_ = SimulatorReportSingle();
|
|
Dune::Timer perfTimer;
|
|
|
|
perfTimer.start();
|
|
report.total_linearizations = 1;
|
|
|
|
// ----------- Assemble -----------
|
|
try {
|
|
report += assembleReservoir(timer, iteration);
|
|
report.assemble_time += perfTimer.stop();
|
|
}
|
|
catch (...) {
|
|
report.assemble_time += perfTimer.stop();
|
|
failureReport_ += report;
|
|
throw; // continue throwing the stick
|
|
}
|
|
|
|
// ----------- Check if converged -----------
|
|
std::vector<Scalar> residual_norms;
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
// the step is not considered converged until at least minIter iterations is done
|
|
{
|
|
auto convrep = getConvergence(timer, iteration, maxIter, residual_norms);
|
|
report.converged = convrep.converged() && iteration >= minIter;
|
|
ConvergenceReport::Severity severity = convrep.severityOfWorstFailure();
|
|
convergence_reports_.back().report.push_back(std::move(convrep));
|
|
|
|
// Throw if any NaN or too large residual found.
|
|
if (severity == ConvergenceReport::Severity::NotANumber) {
|
|
failureReport_ += report;
|
|
OPM_THROW_PROBLEM(NumericalProblem, "NaN residual found!");
|
|
} else if (severity == ConvergenceReport::Severity::TooLarge) {
|
|
failureReport_ += report;
|
|
OPM_THROW_NOLOG(NumericalProblem, "Too large residual found!");
|
|
} else if (severity == ConvergenceReport::Severity::ConvergenceMonitorFailure) {
|
|
failureReport_ += report;
|
|
OPM_THROW_PROBLEM(ConvergenceMonitorFailure,
|
|
fmt::format(
|
|
"Total penalty count exceeded cut-off-limit of {}",
|
|
param_.monitor_params_.cutoff_
|
|
));
|
|
}
|
|
}
|
|
report.update_time += perfTimer.stop();
|
|
residual_norms_history_.push_back(residual_norms);
|
|
}
|
|
|
|
template <class TypeTag>
|
|
template <class NonlinearSolverType>
|
|
SimulatorReportSingle
|
|
BlackoilModel<TypeTag>::
|
|
nonlinearIteration(const int iteration,
|
|
const SimulatorTimerInterface& timer,
|
|
NonlinearSolverType& nonlinear_solver)
|
|
{
|
|
if (iteration == 0) {
|
|
// For each iteration we store in a vector the norms of the residual of
|
|
// the mass balance for each active phase, the well flux and the well equations.
|
|
residual_norms_history_.clear();
|
|
conv_monitor_.reset();
|
|
current_relaxation_ = 1.0;
|
|
dx_old_ = 0.0;
|
|
convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}});
|
|
convergence_reports_.back().report.reserve(11);
|
|
}
|
|
|
|
SimulatorReportSingle result;
|
|
if ((this->param_.nonlinear_solver_ != "nldd") ||
|
|
(iteration < this->param_.nldd_num_initial_newton_iter_))
|
|
{
|
|
result = this->nonlinearIterationNewton(iteration,
|
|
timer,
|
|
nonlinear_solver);
|
|
}
|
|
else {
|
|
result = this->nlddSolver_->nonlinearIterationNldd(iteration,
|
|
timer,
|
|
nonlinear_solver);
|
|
}
|
|
|
|
rst_conv_.update(simulator_.model().linearizer().residual());
|
|
|
|
return result;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
template <class NonlinearSolverType>
|
|
SimulatorReportSingle
|
|
BlackoilModel<TypeTag>::
|
|
nonlinearIterationNewton(const int iteration,
|
|
const SimulatorTimerInterface& timer,
|
|
NonlinearSolverType& nonlinear_solver)
|
|
{
|
|
// ----------- Set up reports and timer -----------
|
|
SimulatorReportSingle report;
|
|
Dune::Timer perfTimer;
|
|
|
|
this->initialLinearization(report,
|
|
iteration,
|
|
nonlinear_solver.minIter(),
|
|
nonlinear_solver.maxIter(),
|
|
timer);
|
|
|
|
// ----------- If not converged, solve linear system and do Newton update -----------
|
|
if (!report.converged) {
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
report.total_newton_iterations = 1;
|
|
|
|
// Compute the nonlinear update.
|
|
unsigned nc = simulator_.model().numGridDof();
|
|
BVector x(nc);
|
|
|
|
// Solve the linear system.
|
|
linear_solve_setup_time_ = 0.0;
|
|
try {
|
|
// Apply the Schur complement of the well model to
|
|
// the reservoir linearized equations.
|
|
// Note that linearize may throw for MSwells.
|
|
wellModel().linearize(simulator().model().linearizer().jacobian(),
|
|
simulator().model().linearizer().residual());
|
|
|
|
// ---- Solve linear system ----
|
|
solveJacobianSystem(x);
|
|
|
|
report.linear_solve_setup_time += linear_solve_setup_time_;
|
|
report.linear_solve_time += perfTimer.stop();
|
|
report.total_linear_iterations += linearIterationsLastSolve();
|
|
}
|
|
catch (...) {
|
|
report.linear_solve_setup_time += linear_solve_setup_time_;
|
|
report.linear_solve_time += perfTimer.stop();
|
|
report.total_linear_iterations += linearIterationsLastSolve();
|
|
|
|
failureReport_ += report;
|
|
throw; // re-throw up
|
|
}
|
|
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
|
|
// handling well state update before oscillation treatment is a decision based
|
|
// on observation to avoid some big performance degeneration under some circumstances.
|
|
// there is no theorectical explanation which way is better for sure.
|
|
wellModel().postSolve(x);
|
|
|
|
if (param_.use_update_stabilization_) {
|
|
// Stabilize the nonlinear update.
|
|
bool isOscillate = false;
|
|
bool isStagnate = false;
|
|
nonlinear_solver.detectOscillations(residual_norms_history_,
|
|
residual_norms_history_.size() - 1,
|
|
isOscillate,
|
|
isStagnate);
|
|
if (isOscillate) {
|
|
current_relaxation_ -= nonlinear_solver.relaxIncrement();
|
|
current_relaxation_ = std::max(current_relaxation_,
|
|
nonlinear_solver.relaxMax());
|
|
if (terminalOutputEnabled()) {
|
|
std::string msg = " Oscillating behavior detected: Relaxation set to "
|
|
+ std::to_string(current_relaxation_);
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
|
|
}
|
|
|
|
// ---- Newton update ----
|
|
// Apply the update, with considering model-dependent limitations and
|
|
// chopping of the update.
|
|
updateSolution(x);
|
|
|
|
report.update_time += perfTimer.stop();
|
|
}
|
|
|
|
return report;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
SimulatorReportSingle
|
|
BlackoilModel<TypeTag>::
|
|
afterStep(const SimulatorTimerInterface&)
|
|
{
|
|
SimulatorReportSingle report;
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
simulator_.problem().endTimeStep();
|
|
simulator_.problem().setConvData(rst_conv_.getData());
|
|
report.pre_post_time += perfTimer.stop();
|
|
return report;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
SimulatorReportSingle
|
|
BlackoilModel<TypeTag>::
|
|
assembleReservoir(const SimulatorTimerInterface& /* timer */,
|
|
const int iterationIdx)
|
|
{
|
|
// -------- Mass balance equations --------
|
|
simulator_.model().newtonMethod().setIterationIndex(iterationIdx);
|
|
simulator_.problem().beginIteration();
|
|
simulator_.model().linearizer().linearizeDomain();
|
|
simulator_.problem().endIteration();
|
|
return wellModel().lastReport();
|
|
}
|
|
|
|
template <class TypeTag>
|
|
typename BlackoilModel<TypeTag>::Scalar
|
|
BlackoilModel<TypeTag>::
|
|
relativeChange() const
|
|
{
|
|
Scalar resultDelta = 0.0;
|
|
Scalar resultDenom = 0.0;
|
|
|
|
const auto& elemMapper = simulator_.model().elementMapper();
|
|
const auto& gridView = simulator_.gridView();
|
|
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
|
|
unsigned globalElemIdx = elemMapper.index(elem);
|
|
const auto& priVarsNew = simulator_.model().solution(/*timeIdx=*/0)[globalElemIdx];
|
|
|
|
Scalar pressureNew;
|
|
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
|
|
|
|
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
|
|
Scalar oilSaturationNew = 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) &&
|
|
FluidSystem::numActivePhases() > 1 &&
|
|
priVarsNew.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw)
|
|
{
|
|
saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSwitchIdx];
|
|
oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) &&
|
|
FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
|
|
priVarsNew.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg)
|
|
{
|
|
assert(Indices::compositionSwitchIdx >= 0);
|
|
saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx];
|
|
oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew;
|
|
}
|
|
|
|
const auto& priVarsOld = simulator_.model().solution(/*timeIdx=*/1)[globalElemIdx];
|
|
|
|
Scalar pressureOld;
|
|
pressureOld = priVarsOld[Indices::pressureSwitchIdx];
|
|
|
|
Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 };
|
|
Scalar oilSaturationOld = 1.0;
|
|
|
|
// NB fix me! adding pressures changes to saturation changes does not make sense
|
|
Scalar tmp = pressureNew - pressureOld;
|
|
resultDelta += tmp*tmp;
|
|
resultDenom += pressureNew*pressureNew;
|
|
|
|
if (FluidSystem::numActivePhases() > 1) {
|
|
if (priVarsOld.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw) {
|
|
saturationsOld[FluidSystem::waterPhaseIdx] =
|
|
priVarsOld[Indices::waterSwitchIdx];
|
|
oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx];
|
|
}
|
|
|
|
if (priVarsOld.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg)
|
|
{
|
|
assert(Indices::compositionSwitchIdx >= 0 );
|
|
saturationsOld[FluidSystem::gasPhaseIdx] =
|
|
priVarsOld[Indices::compositionSwitchIdx];
|
|
oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld;
|
|
}
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) {
|
|
Scalar tmpSat = saturationsNew[phaseIdx] - saturationsOld[phaseIdx];
|
|
resultDelta += tmpSat*tmpSat;
|
|
resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx];
|
|
assert(std::isfinite(resultDelta));
|
|
assert(std::isfinite(resultDenom));
|
|
}
|
|
}
|
|
}
|
|
|
|
resultDelta = gridView.comm().sum(resultDelta);
|
|
resultDenom = gridView.comm().sum(resultDenom);
|
|
|
|
return resultDenom > 0.0 ? resultDelta / resultDenom : 0.0;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
void
|
|
BlackoilModel<TypeTag>::
|
|
solveJacobianSystem(BVector& x)
|
|
{
|
|
auto& jacobian = simulator_.model().linearizer().jacobian().istlMatrix();
|
|
auto& residual = simulator_.model().linearizer().residual();
|
|
auto& linSolver = simulator_.model().newtonMethod().linearSolver();
|
|
|
|
const int numSolvers = linSolver.numAvailableSolvers();
|
|
if (numSolvers > 1 && (linSolver.getSolveCount() % 100 == 0)) {
|
|
if (terminal_output_) {
|
|
OpmLog::debug("\nRunning speed test for comparing available linear solvers.");
|
|
}
|
|
|
|
Dune::Timer perfTimer;
|
|
std::vector<double> times(numSolvers);
|
|
std::vector<double> setupTimes(numSolvers);
|
|
|
|
x = 0.0;
|
|
std::vector<BVector> x_trial(numSolvers, x);
|
|
for (int solver = 0; solver < numSolvers; ++solver) {
|
|
BVector x0(x);
|
|
linSolver.setActiveSolver(solver);
|
|
perfTimer.start();
|
|
linSolver.prepare(jacobian, residual);
|
|
setupTimes[solver] = perfTimer.stop();
|
|
perfTimer.reset();
|
|
linSolver.setResidual(residual);
|
|
perfTimer.start();
|
|
linSolver.solve(x_trial[solver]);
|
|
times[solver] = perfTimer.stop();
|
|
perfTimer.reset();
|
|
if (terminal_output_) {
|
|
OpmLog::debug(fmt::format("Solver time {}: {}", solver, times[solver]));
|
|
}
|
|
}
|
|
|
|
int fastest_solver = std::min_element(times.begin(), times.end()) - times.begin();
|
|
// Use timing on rank 0 to determine fastest, must be consistent across ranks.
|
|
grid_.comm().broadcast(&fastest_solver, 1, 0);
|
|
linear_solve_setup_time_ = setupTimes[fastest_solver];
|
|
x = x_trial[fastest_solver];
|
|
linSolver.setActiveSolver(fastest_solver);
|
|
}
|
|
else {
|
|
// set initial guess
|
|
x = 0.0;
|
|
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
linSolver.prepare(jacobian, residual);
|
|
linear_solve_setup_time_ = perfTimer.stop();
|
|
linSolver.setResidual(residual);
|
|
// actually, the error needs to be calculated after setResidual in order to
|
|
// account for parallelization properly. since the residual of ECFV
|
|
// discretizations does not need to be synchronized across processes to be
|
|
// consistent, this is not relevant for OPM-flow...
|
|
linSolver.solve(x);
|
|
}
|
|
}
|
|
|
|
template <class TypeTag>
|
|
void
|
|
BlackoilModel<TypeTag>::
|
|
updateSolution(const BVector& dx)
|
|
{
|
|
OPM_TIMEBLOCK(updateSolution);
|
|
auto& newtonMethod = simulator_.model().newtonMethod();
|
|
SolutionVector& solution = simulator_.model().solution(/*timeIdx=*/0);
|
|
|
|
newtonMethod.update_(/*nextSolution=*/solution,
|
|
/*curSolution=*/solution,
|
|
/*update=*/dx,
|
|
/*resid=*/dx); // the update routines of the black
|
|
// oil model do not care about the
|
|
// residual
|
|
|
|
// if the solution is updated, the intensive quantities need to be recalculated
|
|
{
|
|
OPM_TIMEBLOCK(invalidateAndUpdateIntensiveQuantities);
|
|
simulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
|
|
}
|
|
}
|
|
|
|
template <class TypeTag>
|
|
std::tuple<typename BlackoilModel<TypeTag>::Scalar,
|
|
typename BlackoilModel<TypeTag>::Scalar>
|
|
BlackoilModel<TypeTag>::
|
|
convergenceReduction(Parallel::Communication comm,
|
|
const Scalar pvSumLocal,
|
|
const Scalar numAquiferPvSumLocal,
|
|
std::vector< Scalar >& R_sum,
|
|
std::vector< Scalar >& maxCoeff,
|
|
std::vector< Scalar >& B_avg)
|
|
{
|
|
OPM_TIMEBLOCK(convergenceReduction);
|
|
// Compute total pore volume (use only owned entries)
|
|
Scalar pvSum = pvSumLocal;
|
|
Scalar numAquiferPvSum = numAquiferPvSumLocal;
|
|
|
|
if (comm.size() > 1) {
|
|
// global reduction
|
|
std::vector< Scalar > sumBuffer;
|
|
std::vector< Scalar > maxBuffer;
|
|
const int numComp = B_avg.size();
|
|
sumBuffer.reserve( 2*numComp + 2 ); // +2 for (numAquifer)pvSum
|
|
maxBuffer.reserve( numComp );
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
sumBuffer.push_back(B_avg[compIdx]);
|
|
sumBuffer.push_back(R_sum[compIdx]);
|
|
maxBuffer.push_back(maxCoeff[ compIdx]);
|
|
}
|
|
|
|
// Compute total pore volume
|
|
sumBuffer.push_back( pvSum );
|
|
sumBuffer.push_back( numAquiferPvSum );
|
|
|
|
// compute global sum
|
|
comm.sum( sumBuffer.data(), sumBuffer.size() );
|
|
|
|
// compute global max
|
|
comm.max( maxBuffer.data(), maxBuffer.size() );
|
|
|
|
// restore values to local variables
|
|
for (int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx) {
|
|
B_avg[compIdx] = sumBuffer[buffIdx];
|
|
++buffIdx;
|
|
|
|
R_sum[compIdx] = sumBuffer[buffIdx];
|
|
}
|
|
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
maxCoeff[compIdx] = maxBuffer[compIdx];
|
|
}
|
|
|
|
// restore global pore volume
|
|
pvSum = sumBuffer[sumBuffer.size()-2];
|
|
numAquiferPvSum = sumBuffer.back();
|
|
}
|
|
|
|
// return global pore volume
|
|
return {pvSum, numAquiferPvSum};
|
|
}
|
|
|
|
template <class TypeTag>
|
|
std::pair<typename BlackoilModel<TypeTag>::Scalar,
|
|
typename BlackoilModel<TypeTag>::Scalar>
|
|
BlackoilModel<TypeTag>::
|
|
localConvergenceData(std::vector<Scalar>& R_sum,
|
|
std::vector<Scalar>& maxCoeff,
|
|
std::vector<Scalar>& B_avg,
|
|
std::vector<int>& maxCoeffCell)
|
|
{
|
|
OPM_TIMEBLOCK(localConvergenceData);
|
|
Scalar pvSumLocal = 0.0;
|
|
Scalar numAquiferPvSumLocal = 0.0;
|
|
const auto& model = simulator_.model();
|
|
const auto& problem = simulator_.problem();
|
|
|
|
const auto& residual = simulator_.model().linearizer().residual();
|
|
|
|
ElementContext elemCtx(simulator_);
|
|
const auto& gridView = simulator().gridView();
|
|
IsNumericalAquiferCell isNumericalAquiferCell(gridView.grid());
|
|
OPM_BEGIN_PARALLEL_TRY_CATCH();
|
|
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const auto pvValue = problem.referencePorosity(cell_idx, /*timeIdx=*/0) *
|
|
model.dofTotalVolume(cell_idx);
|
|
pvSumLocal += pvValue;
|
|
|
|
if (isNumericalAquiferCell(elem)) {
|
|
numAquiferPvSumLocal += pvValue;
|
|
}
|
|
|
|
this->getMaxCoeff(cell_idx, intQuants, fs, residual, pvValue,
|
|
B_avg, R_sum, maxCoeff, maxCoeffCell);
|
|
}
|
|
|
|
OPM_END_PARALLEL_TRY_CATCH("BlackoilModel::localConvergenceData() failed: ", grid_.comm());
|
|
|
|
// compute local average in terms of global number of elements
|
|
const int bSize = B_avg.size();
|
|
for (int i = 0; i < bSize; ++i) {
|
|
B_avg[i] /= Scalar(global_nc_);
|
|
}
|
|
|
|
return {pvSumLocal, numAquiferPvSumLocal};
|
|
}
|
|
|
|
template <class TypeTag>
|
|
std::pair<std::vector<double>, std::vector<int>>
|
|
BlackoilModel<TypeTag>::
|
|
characteriseCnvPvSplit(const std::vector<Scalar>& B_avg, const double dt)
|
|
{
|
|
OPM_TIMEBLOCK(computeCnvErrorPv);
|
|
|
|
// 0: cnv <= tolerance_cnv
|
|
// 1: tolerance_cnv < cnv <= tolerance_cnv_relaxed
|
|
// 2: tolerance_cnv_relaxed < cnv
|
|
constexpr auto numPvGroups = std::vector<double>::size_type{3};
|
|
|
|
auto cnvPvSplit = std::pair<std::vector<double>, std::vector<int>> {
|
|
std::piecewise_construct,
|
|
std::forward_as_tuple(numPvGroups),
|
|
std::forward_as_tuple(numPvGroups)
|
|
};
|
|
|
|
auto maxCNV = [&B_avg, dt](const auto& residual, const double pvol)
|
|
{
|
|
return (dt / pvol) *
|
|
std::inner_product(residual.begin(), residual.end(),
|
|
B_avg.begin(), Scalar{0},
|
|
[](const Scalar m, const auto& x)
|
|
{
|
|
using std::abs;
|
|
return std::max(m, abs(x));
|
|
}, std::multiplies<>{});
|
|
};
|
|
|
|
auto& [splitPV, cellCntPV] = cnvPvSplit;
|
|
|
|
const auto& model = this->simulator().model();
|
|
const auto& problem = this->simulator().problem();
|
|
const auto& residual = model.linearizer().residual();
|
|
const auto& gridView = this->simulator().gridView();
|
|
|
|
const IsNumericalAquiferCell isNumericalAquiferCell(gridView.grid());
|
|
|
|
ElementContext elemCtx(this->simulator());
|
|
|
|
OPM_BEGIN_PARALLEL_TRY_CATCH();
|
|
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
|
|
// Skip cells of numerical Aquifer
|
|
if (isNumericalAquiferCell(elem)) {
|
|
continue;
|
|
}
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
|
|
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto pvValue = problem.referencePorosity(cell_idx, /*timeIdx=*/0)
|
|
* model.dofTotalVolume(cell_idx);
|
|
|
|
const auto maxCnv = maxCNV(residual[cell_idx], pvValue);
|
|
|
|
const auto ix = (maxCnv > this->param_.tolerance_cnv_)
|
|
+ (maxCnv > this->param_.tolerance_cnv_relaxed_);
|
|
|
|
splitPV[ix] += static_cast<double>(pvValue);
|
|
++cellCntPV[ix];
|
|
}
|
|
|
|
OPM_END_PARALLEL_TRY_CATCH("BlackoilModel::characteriseCnvPvSplit() failed: ",
|
|
this->grid_.comm());
|
|
|
|
this->grid_.comm().sum(splitPV .data(), splitPV .size());
|
|
this->grid_.comm().sum(cellCntPV.data(), cellCntPV.size());
|
|
|
|
return cnvPvSplit;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
void
|
|
BlackoilModel<TypeTag>::
|
|
updateTUNING(const Tuning& tuning)
|
|
{
|
|
this->param_.tolerance_mb_ = tuning.XXXMBE;
|
|
|
|
if (terminal_output_) {
|
|
OpmLog::debug(fmt::format("Setting BlackoilModel mass "
|
|
"balance limit (XXXMBE) to {:.2e}",
|
|
tuning.XXXMBE));
|
|
}
|
|
}
|
|
|
|
template <class TypeTag>
|
|
ConvergenceReport
|
|
BlackoilModel<TypeTag>::
|
|
getReservoirConvergence(const double reportTime,
|
|
const double dt,
|
|
const int iteration,
|
|
const int maxIter,
|
|
std::vector<Scalar>& B_avg,
|
|
std::vector<Scalar>& residual_norms)
|
|
{
|
|
OPM_TIMEBLOCK(getReservoirConvergence);
|
|
using Vector = std::vector<Scalar>;
|
|
|
|
ConvergenceReport report{reportTime};
|
|
|
|
const int numComp = numEq;
|
|
|
|
Vector R_sum(numComp, Scalar{0});
|
|
Vector maxCoeff(numComp, std::numeric_limits<Scalar>::lowest());
|
|
std::vector<int> maxCoeffCell(numComp, -1);
|
|
|
|
const auto [pvSumLocal, numAquiferPvSumLocal] =
|
|
this->localConvergenceData(R_sum, maxCoeff, B_avg, maxCoeffCell);
|
|
|
|
// compute global sum and max of quantities
|
|
const auto& [pvSum, numAquiferPvSum] =
|
|
this->convergenceReduction(this->grid_.comm(),
|
|
pvSumLocal,
|
|
numAquiferPvSumLocal,
|
|
R_sum, maxCoeff, B_avg);
|
|
|
|
report.setCnvPoreVolSplit(this->characteriseCnvPvSplit(B_avg, dt),
|
|
pvSum - numAquiferPvSum);
|
|
|
|
// For each iteration, we need to determine whether to use the
|
|
// relaxed tolerances. To disable the usage of relaxed
|
|
// tolerances, you can set the relaxed tolerances as the strict
|
|
// tolerances. If min_strict_mb_iter = -1 (default) we use a
|
|
// relaxed tolerance for the mass balance for the last
|
|
// iterations. For positive values we use the relaxed tolerance
|
|
// after the given number of iterations
|
|
const bool relax_final_iteration_mb =
|
|
this->param_.min_strict_mb_iter_ < 0 && iteration == maxIter;
|
|
|
|
const bool use_relaxed_mb = relax_final_iteration_mb ||
|
|
(this->param_.min_strict_mb_iter_ >= 0 &&
|
|
iteration >= this->param_.min_strict_mb_iter_);
|
|
|
|
// If min_strict_cnv_iter = -1 we use a relaxed tolerance for
|
|
// the cnv for the last iterations. For positive values we use
|
|
// the relaxed tolerance after the given number of iterations.
|
|
// We also use relaxed tolerances for cells with total
|
|
// pore-volume less than relaxed_max_pv_fraction_. Default
|
|
// value of relaxed_max_pv_fraction_ is 0.03
|
|
const bool relax_final_iteration_cnv =
|
|
this->param_.min_strict_cnv_iter_ < 0 && iteration == maxIter;
|
|
|
|
const bool relax_iter_cnv =
|
|
this->param_.min_strict_cnv_iter_ >= 0 &&
|
|
iteration >= this->param_.min_strict_cnv_iter_;
|
|
|
|
// Note trailing parentheses here, just before the final
|
|
// semicolon. This is an immediately invoked function
|
|
// expression which calculates a single boolean value.
|
|
const auto relax_pv_fraction_cnv =
|
|
[&report, this, eligible = pvSum - numAquiferPvSum]()
|
|
{
|
|
const auto& cnvPvSplit = report.cnvPvSplit().first;
|
|
|
|
// [1]: tol < cnv <= relaxed
|
|
// [2]: relaxed < cnv
|
|
return static_cast<Scalar>(cnvPvSplit[1] + cnvPvSplit[2]) <
|
|
this->param_.relaxed_max_pv_fraction_ * eligible;
|
|
}();
|
|
|
|
const bool use_relaxed_cnv = relax_final_iteration_cnv
|
|
|| relax_pv_fraction_cnv
|
|
|| relax_iter_cnv;
|
|
|
|
if ((relax_final_iteration_mb || relax_final_iteration_cnv) &&
|
|
this->terminal_output_)
|
|
{
|
|
std::string message =
|
|
"Number of newton iterations reached its maximum "
|
|
"try to continue with relaxed tolerances:";
|
|
|
|
if (relax_final_iteration_mb) {
|
|
message += fmt::format(" MB: {:.1e}", param_.tolerance_mb_relaxed_);
|
|
}
|
|
|
|
if (relax_final_iteration_cnv) {
|
|
message += fmt::format(" CNV: {:.1e}", param_.tolerance_cnv_relaxed_);
|
|
}
|
|
|
|
OpmLog::debug(message);
|
|
}
|
|
|
|
const auto tol_cnv = use_relaxed_cnv ? param_.tolerance_cnv_relaxed_ : param_.tolerance_cnv_;
|
|
const auto tol_mb = use_relaxed_mb ? param_.tolerance_mb_relaxed_ : param_.tolerance_mb_;
|
|
const auto tol_cnv_energy = use_relaxed_cnv ? param_.tolerance_cnv_energy_relaxed_ : param_.tolerance_cnv_energy_;
|
|
const auto tol_eb = use_relaxed_mb ? param_.tolerance_energy_balance_relaxed_ : param_.tolerance_energy_balance_;
|
|
|
|
// Finish computation
|
|
std::vector<Scalar> CNV(numComp);
|
|
std::vector<Scalar> mass_balance_residual(numComp);
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx)
|
|
{
|
|
CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx];
|
|
mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum;
|
|
residual_norms.push_back(CNV[compIdx]);
|
|
}
|
|
|
|
using CR = ConvergenceReport;
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
const Scalar res[2] = {
|
|
mass_balance_residual[compIdx], CNV[compIdx],
|
|
};
|
|
|
|
const CR::ReservoirFailure::Type types[2] = {
|
|
CR::ReservoirFailure::Type::MassBalance,
|
|
CR::ReservoirFailure::Type::Cnv,
|
|
};
|
|
|
|
Scalar tol[2] = { tol_mb, tol_cnv, };
|
|
if (has_energy_ && compIdx == contiEnergyEqIdx) {
|
|
tol[0] = tol_eb;
|
|
tol[1] = tol_cnv_energy;
|
|
}
|
|
|
|
for (int ii : {0, 1}) {
|
|
if (std::isnan(res[ii])) {
|
|
report.setReservoirFailed({types[ii], CR::Severity::NotANumber, compIdx});
|
|
if (this->terminal_output_) {
|
|
OpmLog::debug("NaN residual for " + this->compNames_.name(compIdx) + " equation.");
|
|
}
|
|
}
|
|
else if (res[ii] > maxResidualAllowed()) {
|
|
report.setReservoirFailed({types[ii], CR::Severity::TooLarge, compIdx});
|
|
if (this->terminal_output_) {
|
|
OpmLog::debug("Too large residual for " + this->compNames_.name(compIdx) + " equation.");
|
|
}
|
|
}
|
|
else if (res[ii] < 0.0) {
|
|
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
|
|
if (this->terminal_output_) {
|
|
OpmLog::debug("Negative residual for " + this->compNames_.name(compIdx) + " equation.");
|
|
}
|
|
}
|
|
else if (res[ii] > tol[ii]) {
|
|
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
|
|
}
|
|
|
|
report.setReservoirConvergenceMetric(types[ii], compIdx, res[ii], tol[ii]);
|
|
}
|
|
}
|
|
|
|
// Output of residuals.
|
|
if (this->terminal_output_) {
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::string msg = "Iter";
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
msg += " MB(";
|
|
msg += this->compNames_.name(compIdx)[0];
|
|
msg += ") ";
|
|
}
|
|
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
msg += " CNV(";
|
|
msg += this->compNames_.name(compIdx)[0];
|
|
msg += ") ";
|
|
}
|
|
|
|
OpmLog::debug(msg);
|
|
}
|
|
|
|
std::ostringstream ss;
|
|
const std::streamsize oprec = ss.precision(3);
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
|
|
ss << std::setw(4) << iteration;
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
ss << std::setw(11) << mass_balance_residual[compIdx];
|
|
}
|
|
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
ss << std::setw(11) << CNV[compIdx];
|
|
}
|
|
|
|
ss.precision(oprec);
|
|
ss.flags(oflags);
|
|
|
|
OpmLog::debug(ss.str());
|
|
}
|
|
|
|
return report;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
ConvergenceReport
|
|
BlackoilModel<TypeTag>::
|
|
getConvergence(const SimulatorTimerInterface& timer,
|
|
const int iteration,
|
|
const int maxIter,
|
|
std::vector<Scalar>& residual_norms)
|
|
{
|
|
OPM_TIMEBLOCK(getConvergence);
|
|
// Get convergence reports for reservoir and wells.
|
|
std::vector<Scalar> B_avg(numEq, 0.0);
|
|
auto report = getReservoirConvergence(timer.simulationTimeElapsed(),
|
|
timer.currentStepLength(),
|
|
iteration, maxIter, B_avg, residual_norms);
|
|
{
|
|
OPM_TIMEBLOCK(getWellConvergence);
|
|
report += wellModel().getWellConvergence(B_avg,
|
|
/*checkWellGroupControls*/report.converged());
|
|
}
|
|
|
|
conv_monitor_.checkPenaltyCard(report, iteration);
|
|
|
|
return report;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
std::vector<std::vector<typename BlackoilModel<TypeTag>::Scalar> >
|
|
BlackoilModel<TypeTag>::
|
|
computeFluidInPlace(const std::vector<int>& /*fipnum*/) const
|
|
{
|
|
OPM_TIMEBLOCK(computeFluidInPlace);
|
|
// assert(true)
|
|
// return an empty vector
|
|
std::vector<std::vector<Scalar> > regionValues(0, std::vector<Scalar>(0,0.0));
|
|
return regionValues;
|
|
}
|
|
|
|
template <class TypeTag>
|
|
SimulatorReportSingle
|
|
BlackoilModel<TypeTag>::
|
|
localAccumulatedReports() const
|
|
{
|
|
return nlddSolver_ ? nlddSolver_->localAccumulatedReports()
|
|
: SimulatorReportSingle{};
|
|
}
|
|
|
|
template <class TypeTag>
|
|
void
|
|
BlackoilModel<TypeTag>::
|
|
writePartitions(const std::filesystem::path& odir) const
|
|
{
|
|
if (this->nlddSolver_ != nullptr) {
|
|
this->nlddSolver_->writePartitions(odir);
|
|
return;
|
|
}
|
|
|
|
const auto& elementMapper = this->simulator().model().elementMapper();
|
|
const auto& cartMapper = this->simulator().vanguard().cartesianIndexMapper();
|
|
|
|
const auto& grid = this->simulator().vanguard().grid();
|
|
const auto& comm = grid.comm();
|
|
const auto nDigit = 1 + static_cast<int>(std::floor(std::log10(comm.size())));
|
|
|
|
std::ofstream pfile {odir / fmt::format("{1:0>{0}}", nDigit, comm.rank())};
|
|
|
|
for (const auto& cell : elements(grid.leafGridView(), Dune::Partitions::interior)) {
|
|
pfile << comm.rank() << ' '
|
|
<< cartMapper.cartesianIndex(elementMapper.index(cell)) << ' '
|
|
<< comm.rank() << '\n';
|
|
}
|
|
}
|
|
|
|
template <class TypeTag>
|
|
template<class FluidState, class Residual>
|
|
void
|
|
BlackoilModel<TypeTag>::
|
|
getMaxCoeff(const unsigned cell_idx,
|
|
const IntensiveQuantities& intQuants,
|
|
const FluidState& fs,
|
|
const Residual& modelResid,
|
|
const Scalar pvValue,
|
|
std::vector<Scalar>& B_avg,
|
|
std::vector<Scalar>& R_sum,
|
|
std::vector<Scalar>& maxCoeff,
|
|
std::vector<int>& maxCoeffCell)
|
|
{
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
|
|
{
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned sIdx = FluidSystem::solventComponentIndex(phaseIdx);
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(sIdx);
|
|
|
|
B_avg[compIdx] += 1.0 / fs.invB(phaseIdx).value();
|
|
const auto R2 = modelResid[cell_idx][compIdx];
|
|
|
|
R_sum[compIdx] += R2;
|
|
const Scalar Rval = std::abs(R2) / pvValue;
|
|
if (Rval > maxCoeff[compIdx]) {
|
|
maxCoeff[compIdx] = Rval;
|
|
maxCoeffCell[compIdx] = cell_idx;
|
|
}
|
|
}
|
|
|
|
if constexpr (has_solvent_) {
|
|
B_avg[contiSolventEqIdx] +=
|
|
1.0 / intQuants.solventInverseFormationVolumeFactor().value();
|
|
const auto R2 = modelResid[cell_idx][contiSolventEqIdx];
|
|
R_sum[contiSolventEqIdx] += R2;
|
|
maxCoeff[contiSolventEqIdx] = std::max(maxCoeff[contiSolventEqIdx],
|
|
std::abs(R2) / pvValue);
|
|
}
|
|
if constexpr (has_extbo_) {
|
|
B_avg[contiZfracEqIdx] += 1.0 / fs.invB(FluidSystem::gasPhaseIdx).value();
|
|
const auto R2 = modelResid[cell_idx][contiZfracEqIdx];
|
|
R_sum[ contiZfracEqIdx ] += R2;
|
|
maxCoeff[contiZfracEqIdx] = std::max(maxCoeff[contiZfracEqIdx],
|
|
std::abs(R2) / pvValue);
|
|
}
|
|
if constexpr (has_polymer_) {
|
|
B_avg[contiPolymerEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R2 = modelResid[cell_idx][contiPolymerEqIdx];
|
|
R_sum[contiPolymerEqIdx] += R2;
|
|
maxCoeff[contiPolymerEqIdx] = std::max(maxCoeff[contiPolymerEqIdx],
|
|
std::abs(R2) / pvValue);
|
|
}
|
|
if constexpr (has_foam_) {
|
|
B_avg[ contiFoamEqIdx ] += 1.0 / fs.invB(FluidSystem::gasPhaseIdx).value();
|
|
const auto R2 = modelResid[cell_idx][contiFoamEqIdx];
|
|
R_sum[contiFoamEqIdx] += R2;
|
|
maxCoeff[contiFoamEqIdx] = std::max(maxCoeff[contiFoamEqIdx],
|
|
std::abs(R2) / pvValue);
|
|
}
|
|
if constexpr (has_brine_) {
|
|
B_avg[ contiBrineEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R2 = modelResid[cell_idx][contiBrineEqIdx];
|
|
R_sum[contiBrineEqIdx] += R2;
|
|
maxCoeff[contiBrineEqIdx] = std::max(maxCoeff[contiBrineEqIdx],
|
|
std::abs(R2) / pvValue);
|
|
}
|
|
|
|
if constexpr (has_polymermw_) {
|
|
static_assert(has_polymer_);
|
|
|
|
B_avg[contiPolymerMWEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
// the residual of the polymer molecular equation is scaled down by a 100, since molecular weight
|
|
// can be much bigger than 1, and this equation shares the same tolerance with other mass balance equations
|
|
// TODO: there should be a more general way to determine the scaling-down coefficient
|
|
const auto R2 = modelResid[cell_idx][contiPolymerMWEqIdx] / 100.;
|
|
R_sum[contiPolymerMWEqIdx] += R2;
|
|
maxCoeff[contiPolymerMWEqIdx] = std::max(maxCoeff[contiPolymerMWEqIdx],
|
|
std::abs(R2) / pvValue);
|
|
}
|
|
|
|
if constexpr (has_energy_) {
|
|
B_avg[contiEnergyEqIdx] += 1.0 / (4.182e1); // converting J -> RM3 (entalpy / (cp * deltaK * rho) assuming change of 1e-5K of water
|
|
const auto R2 = modelResid[cell_idx][contiEnergyEqIdx];
|
|
R_sum[contiEnergyEqIdx] += R2;
|
|
maxCoeff[contiEnergyEqIdx] = std::max(maxCoeff[contiEnergyEqIdx],
|
|
std::abs(R2) / pvValue);
|
|
}
|
|
|
|
if constexpr (has_micp_) {
|
|
B_avg[contiMicrobialEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R1 = modelResid[cell_idx][contiMicrobialEqIdx];
|
|
R_sum[contiMicrobialEqIdx] += R1;
|
|
maxCoeff[contiMicrobialEqIdx] = std::max(maxCoeff[contiMicrobialEqIdx],
|
|
std::abs(R1) / pvValue);
|
|
B_avg[contiOxygenEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R2 = modelResid[cell_idx][contiOxygenEqIdx];
|
|
R_sum[contiOxygenEqIdx] += R2;
|
|
maxCoeff[contiOxygenEqIdx] = std::max(maxCoeff[contiOxygenEqIdx],
|
|
std::abs(R2) / pvValue);
|
|
B_avg[contiUreaEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R3 = modelResid[cell_idx][contiUreaEqIdx];
|
|
R_sum[contiUreaEqIdx] += R3;
|
|
maxCoeff[contiUreaEqIdx] = std::max(maxCoeff[contiUreaEqIdx],
|
|
std::abs(R3) / pvValue);
|
|
B_avg[contiBiofilmEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R4 = modelResid[cell_idx][contiBiofilmEqIdx];
|
|
R_sum[contiBiofilmEqIdx] += R4;
|
|
maxCoeff[contiBiofilmEqIdx] = std::max(maxCoeff[contiBiofilmEqIdx],
|
|
std::abs(R4) / pvValue);
|
|
B_avg[contiCalciteEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
|
|
const auto R5 = modelResid[cell_idx][contiCalciteEqIdx];
|
|
R_sum[contiCalciteEqIdx] += R5;
|
|
maxCoeff[contiCalciteEqIdx] = std::max(maxCoeff[contiCalciteEqIdx],
|
|
std::abs(R5) / pvValue);
|
|
}
|
|
}
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_BLACKOILMODEL_IMPL_HEADER_INCLUDED
|