opm-simulators/opm/simulators/flow/FlowProblemBlackoil.hpp
Arne Morten Kvarving f7cfa7a04b FlowProblem: move some more code to FlowGenericProblem
typetag less parameter system now allows us to initialize these variables
in class that holds them.
2025-01-15 08:40:48 +01:00

1598 lines
68 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright 2023 INRIA
Copyright 2024 SINTEF Digital
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FlowProblemBlackoil
*/
#ifndef OPM_FLOW_PROBLEM_BLACK_HPP
#define OPM_FLOW_PROBLEM_BLACK_HPP
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DryGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/WetGasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/LiveOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/DeadOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityOilPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/ConstantCompressibilityWaterPvt.hpp>
#include <opm/models/blackoil/blackoillocalresidualtpfa.hh>
#include <opm/output/eclipse/EclipseIO.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <opm/simulators/flow/ActionHandler.hpp>
#include <opm/simulators/flow/FlowProblem.hpp>
#include <opm/simulators/flow/FlowProblemBlackoilProperties.hpp>
#include <opm/simulators/flow/FlowThresholdPressure.hpp>
#include <opm/simulators/flow/MixingRateControls.hpp>
#include <opm/simulators/flow/OutputBlackoilModule.hpp>
#include <opm/simulators/flow/VtkTracerModule.hpp>
#include <opm/simulators/utils/satfunc/SatfuncConsistencyCheckManager.hpp>
#if HAVE_DAMARIS
#include <opm/simulators/flow/DamarisWriter.hpp>
#endif
#include <algorithm>
#include <cstddef>
#include <functional>
#include <set>
#include <stdexcept>
#include <string>
#include <string_view>
#include <vector>
namespace Opm {
/*!
* \ingroup BlackOilSimulator
*
* \brief This problem simulates an input file given in the data format used by the
* commercial ECLiPSE simulator.
*/
template <class TypeTag>
class FlowProblemBlackoil : public FlowProblem<TypeTag>
{
// TODO: the naming of the Types might be able to be adjusted
using FlowProblemType = FlowProblem<TypeTag>;
using typename FlowProblemType::Scalar;
using typename FlowProblemType::Simulator;
using typename FlowProblemType::GridView;
using typename FlowProblemType::FluidSystem;
using typename FlowProblemType::Vanguard;
using typename FlowProblemType::GlobalEqVector;
using typename FlowProblemType::EqVector;
using FlowProblemType::dim;
using FlowProblemType::dimWorld;
using FlowProblemType::numEq;
using FlowProblemType::numPhases;
using FlowProblemType::numComponents;
// TODO: potentially some cleaning up depending on the usage later here
using FlowProblemType::enableConvectiveMixing;
using FlowProblemType::enableBrine;
using FlowProblemType::enableDiffusion;
using FlowProblemType::enableDispersion;
using FlowProblemType::enableEnergy;
using FlowProblemType::enableExperiments;
using FlowProblemType::enableExtbo;
using FlowProblemType::enableFoam;
using FlowProblemType::enableMICP;
using FlowProblemType::enablePolymer;
using FlowProblemType::enablePolymerMolarWeight;
using FlowProblemType::enableSaltPrecipitation;
using FlowProblemType::enableSolvent;
using FlowProblemType::enableTemperature;
using FlowProblemType::enableThermalFluxBoundaries;
using FlowProblemType::gasPhaseIdx;
using FlowProblemType::oilPhaseIdx;
using FlowProblemType::waterPhaseIdx;
using FlowProblemType::waterCompIdx;
using FlowProblemType::oilCompIdx;
using FlowProblemType::gasCompIdx;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using typename FlowProblemType::RateVector;
using typename FlowProblemType::PrimaryVariables;
using typename FlowProblemType::Indices;
using typename FlowProblemType::IntensiveQuantities;
using typename FlowProblemType::ElementContext;
using typename FlowProblemType::MaterialLaw;
using typename FlowProblemType::DimMatrix;
using SolventModule = BlackOilSolventModule<TypeTag>;
using PolymerModule = BlackOilPolymerModule<TypeTag>;
using FoamModule = BlackOilFoamModule<TypeTag>;
using BrineModule = BlackOilBrineModule<TypeTag>;
using ExtboModule = BlackOilExtboModule<TypeTag>;
using MICPModule = BlackOilMICPModule<TypeTag>;
using DispersionModule = BlackOilDispersionModule<TypeTag, enableDispersion>;
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
using ConvectiveMixingModule = BlackOilConvectiveMixingModule<TypeTag, enableConvectiveMixing>;
using ModuleParams = typename BlackOilLocalResidualTPFA<TypeTag>::ModuleParams;
using InitialFluidState = typename EquilInitializer<TypeTag>::ScalarFluidState;
using EclWriterType = EclWriter<TypeTag, OutputBlackOilModule<TypeTag> >;
#if HAVE_DAMARIS
using DamarisWriterType = DamarisWriter<TypeTag>;
#endif
public:
using FlowProblemType::porosity;
using FlowProblemType::pvtRegionIndex;
/*!
* \copydoc FvBaseProblem::registerParameters
*/
static void registerParameters()
{
FlowProblemType::registerParameters();
EclWriterType::registerParameters();
#if HAVE_DAMARIS
DamarisWriterType::registerParameters();
#endif
VtkTracerModule<TypeTag>::registerParameters();
}
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
explicit FlowProblemBlackoil(Simulator& simulator)
: FlowProblemType(simulator)
, thresholdPressures_(simulator)
, mixControls_(simulator.vanguard().schedule())
, actionHandler_(simulator.vanguard().eclState(),
simulator.vanguard().schedule(),
simulator.vanguard().actionState(),
simulator.vanguard().summaryState(),
this->wellModel_,
simulator.vanguard().grid().comm())
{
this->model().addOutputModule(new VtkTracerModule<TypeTag>(simulator));
// Tell the black-oil extensions to initialize their internal data structures
const auto& vanguard = simulator.vanguard();
BlackOilBrineParams<Scalar> brineParams;
brineParams.template initFromState<enableBrine,
enableSaltPrecipitation>(vanguard.eclState());
BrineModule::setParams(std::move(brineParams));
DiffusionModule::initFromState(vanguard.eclState());
DispersionModule::initFromState(vanguard.eclState());
BlackOilExtboParams<Scalar> extboParams;
extboParams.template initFromState<enableExtbo>(vanguard.eclState());
ExtboModule::setParams(std::move(extboParams));
BlackOilFoamParams<Scalar> foamParams;
foamParams.template initFromState<enableFoam>(vanguard.eclState());
FoamModule::setParams(std::move(foamParams));
BlackOilMICPParams<Scalar> micpParams;
micpParams.template initFromState<enableMICP>(vanguard.eclState());
MICPModule::setParams(std::move(micpParams));
BlackOilPolymerParams<Scalar> polymerParams;
polymerParams.template initFromState<enablePolymer, enablePolymerMolarWeight>(vanguard.eclState());
PolymerModule::setParams(std::move(polymerParams));
BlackOilSolventParams<Scalar> solventParams;
solventParams.template initFromState<enableSolvent>(vanguard.eclState(), vanguard.schedule());
SolventModule::setParams(std::move(solventParams));
// create the ECL writer
eclWriter_ = std::make_unique<EclWriterType>(simulator);
enableEclOutput_ = Parameters::Get<Parameters::EnableEclOutput>();
#if HAVE_DAMARIS
// create Damaris writer
damarisWriter_ = std::make_unique<DamarisWriterType>(simulator);
enableDamarisOutput_ = Parameters::Get<Parameters::EnableDamarisOutput>();
#endif
}
/*!
* \brief Called by the simulator before an episode begins.
*/
void beginEpisode() override
{
FlowProblemType::beginEpisode();
auto& simulator = this->simulator();
const int episodeIdx = simulator.episodeIndex();
const auto& schedule = simulator.vanguard().schedule();
// Evaluate UDQ assign statements to make sure the settings are
// available as UDA controls for the current report step.
this->actionHandler_
.evalUDQAssignments(episodeIdx, simulator.vanguard().udqState());
if (episodeIdx >= 0) {
const auto& oilVap = schedule[episodeIdx].oilvap();
if (oilVap.getType() == OilVaporizationProperties::OilVaporization::VAPPARS) {
FluidSystem::setVapPars(oilVap.vap1(), oilVap.vap2());
}
else {
FluidSystem::setVapPars(0.0, 0.0);
}
}
ConvectiveMixingModule::beginEpisode(simulator.vanguard().eclState(), schedule, episodeIdx,
this->moduleParams_.convectiveMixingModuleParam);
}
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
// TODO: there should be room to remove duplication for this
// function, but there is relatively complicated logic in the
// function calls here. Some refactoring is needed.
FlowProblemType::finishInit();
auto& simulator = this->simulator();
auto finishTransmissibilities = [updated = false, this]() mutable
{
if (updated) { return; }
this->transmissibilities_.finishInit([&vg = this->simulator().vanguard()](const unsigned int it) {
return vg.gridIdxToEquilGridIdx(it);
});
updated = true;
};
// calculating the TRANX, TRANY, TRANZ and NNC for output purpose
// for parallel running, it is based on global trans_
// for serial running, it is based on the transmissibilities_
// we try to avoid for the parallel running, has both global trans_ and transmissibilities_ allocated at the same time
if (enableEclOutput_) {
if (simulator.vanguard().grid().comm().size() > 1) {
if (simulator.vanguard().grid().comm().rank() == 0)
eclWriter_->setTransmissibilities(&simulator.vanguard().globalTransmissibility());
} else {
finishTransmissibilities();
eclWriter_->setTransmissibilities(&simulator.problem().eclTransmissibilities());
}
std::function<unsigned int(unsigned int)> equilGridToGrid = [&simulator](unsigned int i) {
return simulator.vanguard().gridEquilIdxToGridIdx(i);
};
this->eclWriter_->extractOutputTransAndNNC(equilGridToGrid);
}
simulator.vanguard().releaseGlobalTransmissibilities();
const auto& eclState = simulator.vanguard().eclState();
const auto& schedule = simulator.vanguard().schedule();
// Set the start time of the simulation
simulator.setStartTime(schedule.getStartTime());
simulator.setEndTime(schedule.simTime(schedule.size() - 1));
// We want the episode index to be the same as the report step index to make
// things simpler, so we have to set the episode index to -1 because it is
// incremented by endEpisode(). The size of the initial time step and
// length of the initial episode is set to zero for the same reason.
simulator.setEpisodeIndex(-1);
simulator.setEpisodeLength(0.0);
// the "NOGRAV" keyword from Frontsim or setting the EnableGravity to false
// disables gravity, else the standard value of the gravity constant at sea level
// on earth is used
this->gravity_ = 0.0;
if (Parameters::Get<Parameters::EnableGravity>() &&
eclState.getInitConfig().hasGravity())
{
// unit::gravity is 9.80665 m^2/s--i.e., standard measure at Tellus equator.
this->gravity_[dim - 1] = unit::gravity;
}
if (this->enableTuning_) {
// if support for the TUNING keyword is enabled, we get the initial time
// steping parameters from it instead of from command line parameters
const auto& tuning = schedule[0].tuning();
this->initialTimeStepSize_ = tuning.TSINIT.has_value() ? tuning.TSINIT.value() : -1.0;
this->maxTimeStepAfterWellEvent_ = tuning.TMAXWC;
}
this->initFluidSystem_();
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
this->maxOilSaturation_.resize(this->model().numGridDof(), 0.0);
}
this->readRockParameters_(simulator.vanguard().cellCenterDepths(),
[&simulator](const unsigned idx)
{
std::array<int,dim> coords;
simulator.vanguard().cartesianCoordinate(idx, coords);
for (auto& c : coords) {
++c;
}
return coords;
});
this->readMaterialParameters_();
this->readThermalParameters_();
// write the static output files (EGRID, INIT)
if (enableEclOutput_) {
this->eclWriter_->writeInit();
}
finishTransmissibilities();
const auto& initconfig = eclState.getInitConfig();
this->tracerModel_.init(initconfig.restartRequested());
if (initconfig.restartRequested()) {
this->readEclRestartSolution_();
}
else {
this->readInitialCondition_();
}
this->tracerModel_.prepareTracerBatches();
this->updatePffDofData_();
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>()) {
const auto& vanguard = this->simulator().vanguard();
const auto& gridView = vanguard.gridView();
const int numElements = gridView.size(/*codim=*/0);
this->polymer_.maxAdsorption.resize(numElements, 0.0);
}
this->readBoundaryConditions_();
// compute and set eq weights based on initial b values
this->computeAndSetEqWeights_();
if (this->enableDriftCompensation_) {
this->drift_.resize(this->model().numGridDof());
this->drift_ = 0.0;
}
if (this->enableVtkOutput_() && eclState.getIOConfig().initOnly()) {
simulator.setTimeStepSize(0.0);
FlowProblemType::writeOutput(true);
}
// after finishing the initialization and writing the initial solution, we move
// to the first "real" episode/report step
// for restart the episode index and start is already set
if (!initconfig.restartRequested()) {
simulator.startNextEpisode(schedule.seconds(1));
simulator.setEpisodeIndex(0);
simulator.setTimeStepIndex(0);
}
if (Parameters::Get<Parameters::CheckSatfuncConsistency>() &&
! this->satfuncConsistencyRequirementsMet())
{
// User requested that saturation functions be checked for
// consistency and essential/critical requirements are not met.
// Abort simulation run.
//
// Note: We need synchronisation here lest ranks other than the
// I/O rank throw exceptions too early thereby risking an
// incomplete failure report being shown to the user.
this->simulator().vanguard().grid().comm().barrier();
throw std::domain_error {
"Saturation function end-points do not "
"meet requisite consistency conditions"
};
}
// TODO: move to the end for later refactoring of the function finishInit()
//
// deal with DRSDT
this->mixControls_.init(this->model().numGridDof(),
this->episodeIndex(),
eclState.runspec().tabdims().getNumPVTTables());
}
/*!
* \brief Called by the simulator after each time integration.
*/
void endTimeStep() override
{
FlowProblemType::endTimeStep();
// after the solution is updated, the values in output module needs also updated
this->eclWriter()->mutableOutputModule().invalidateLocalData();
const bool isSubStep = !this->simulator().episodeWillBeOver();
// For CpGrid with LGRs, ecl/vtk output is not supported yet.
const auto& grid = this->simulator().vanguard().gridView().grid();
using GridType = std::remove_cv_t<std::remove_reference_t<decltype(grid)>>;
constexpr bool isCpGrid = std::is_same_v<GridType, Dune::CpGrid>;
if (!isCpGrid || (grid.maxLevel() == 0)) {
this->eclWriter_->evalSummaryState(isSubStep);
}
{
OPM_TIMEBLOCK(applyActions);
const int episodeIdx = this->episodeIndex();
auto& simulator = this->simulator();
// Re-ordering in case of Alugrid
this->actionHandler_
.applyActions(episodeIdx, simulator.time() + simulator.timeStepSize(),
[this](const bool global)
{
using TransUpdateQuantities = typename
Vanguard::TransmissibilityType::TransUpdateQuantities;
this->transmissibilities_
.update(global, TransUpdateQuantities::All,
[&vg = this->simulator().vanguard()]
(const unsigned int i)
{
return vg.gridIdxToEquilGridIdx(i);
});
});
}
// Deal with "clogging" for the MICP model
if constexpr (enableMICP) {
auto& model = this->model();
const auto& residual = model.linearizer().residual();
for (unsigned globalDofIdx = 0; globalDofIdx < residual.size(); ++globalDofIdx) {
auto& phi = this->referencePorosity_[/*timeIdx=*/1][globalDofIdx];
MICPModule::checkCloggingMICP(model, phi, globalDofIdx);
}
}
}
/*!
* \brief Called by the simulator after the end of an episode.
*/
void endEpisode() override
{
OPM_TIMEBLOCK(endEpisode);
// Rerun UDQ assignents following action processing on the final
// time step of this episode to make sure that any UDQ ASSIGN
// operations triggered in action blocks take effect. This is
// mainly to work around a shortcoming of the ScheduleState copy
// constructor which clears pending UDQ assignments under the
// assumption that all such assignments have been processed. If an
// action block happens to trigger on the final time step of an
// episode and that action block runs a UDQ assignment, then that
// assignment would be dropped and the rest of the simulator will
// never see its effect without this hack.
this->actionHandler_
.evalUDQAssignments(this->episodeIndex(), this->simulator().vanguard().udqState());
FlowProblemType::endEpisode();
}
void writeReports(const SimulatorTimer& timer)
{
if (this->enableEclOutput_) {
this->eclWriter_->writeReports(timer);
}
}
/*!
* \brief Write the requested quantities of the current solution into the output
* files.
*/
void writeOutput(bool verbose) override
{
FlowProblemType::writeOutput(verbose);
bool isSubStep = !this->simulator().episodeWillBeOver();
data::Solution localCellData = {};
#if HAVE_DAMARIS
// N.B. the Damaris output has to be done before the ECL output as the ECL one
// does all kinds of std::move() relocation of data
if (enableDamarisOutput_) {
damarisWriter_->writeOutput(localCellData, isSubStep) ;
}
#endif
if (enableEclOutput_){
eclWriter_->writeOutput(std::move(localCellData), isSubStep);
}
}
void finalizeOutput()
{
OPM_TIMEBLOCK(finalizeOutput);
// this will write all pending output to disk
// to avoid corruption of output files
eclWriter_.reset();
}
/*!
* \copydoc FvBaseProblem::initialSolutionApplied()
*/
void initialSolutionApplied() override
{
FlowProblemType::initialSolutionApplied();
// let the object for threshold pressures initialize itself. this is done only at
// this point, because determining the threshold pressures may require to access
// the initial solution.
this->thresholdPressures_.finishInit();
// For CpGrid with LGRs, ecl-output is not supported yet.
const auto& grid = this->simulator().vanguard().gridView().grid();
using GridType = std::remove_cv_t<std::remove_reference_t<decltype(grid)>>;
constexpr bool isCpGrid = std::is_same_v<GridType, Dune::CpGrid>;
// Skip - for now - calculate the initial fip values for CpGrid with LGRs.
if (!isCpGrid || (grid.maxLevel() == 0)) {
if (this->simulator().episodeIndex() == 0) {
eclWriter_->writeInitialFIPReport();
}
}
}
void addToSourceDense(RateVector& rate,
unsigned globalDofIdx,
unsigned timeIdx) const override
{
this->aquiferModel_.addToSource(rate, globalDofIdx, timeIdx);
// Add source term from deck
const auto& source = this->simulator().vanguard().schedule()[this->episodeIndex()].source();
std::array<int,3> ijk;
this->simulator().vanguard().cartesianCoordinate(globalDofIdx, ijk);
if (source.hasSource(ijk)) {
const int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
static std::array<SourceComponent, 3> sc_map = {SourceComponent::WATER, SourceComponent::OIL, SourceComponent::GAS};
static std::array<int, 3> phidx_map = {FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx};
static std::array<int, 3> cidx_map = {waterCompIdx, oilCompIdx, gasCompIdx};
for (unsigned i = 0; i < phidx_map.size(); ++i) {
const auto phaseIdx = phidx_map[i];
const auto sourceComp = sc_map[i];
const auto compIdx = cidx_map[i];
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
Scalar mass_rate = source.rate({ijk, sourceComp}) / this->model().dofTotalVolume(globalDofIdx);
if constexpr (getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>()) {
mass_rate /= FluidSystem::referenceDensity(phaseIdx, pvtRegionIdx);
}
rate[Indices::canonicalToActiveComponentIndex(compIdx)] += mass_rate;
}
if constexpr (enableSolvent) {
Scalar mass_rate = source.rate({ijk, SourceComponent::SOLVENT}) / this->model().dofTotalVolume(globalDofIdx);
if constexpr (getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>()) {
const auto& solventPvt = SolventModule::solventPvt();
mass_rate /= solventPvt.referenceDensity(pvtRegionIdx);
}
rate[Indices::contiSolventEqIdx] += mass_rate;
}
if constexpr (enablePolymer) {
rate[Indices::polymerConcentrationIdx] += source.rate({ijk, SourceComponent::POLYMER}) / this->model().dofTotalVolume(globalDofIdx);
}
if constexpr (enableEnergy) {
for (unsigned i = 0; i < phidx_map.size(); ++i) {
const auto phaseIdx = phidx_map[i];
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const auto sourceComp = sc_map[i];
if (source.hasHrate({ijk, sourceComp})) {
rate[Indices::contiEnergyEqIdx] += source.hrate({ijk, sourceComp}) / this->model().dofTotalVolume(globalDofIdx);
} else {
const auto& intQuants = this->simulator().model().intensiveQuantities(globalDofIdx, /*timeIdx*/ 0);
auto fs = intQuants.fluidState();
// if temperature is not set, use cell temperature as default
if (source.hasTemperature({ijk, sourceComp})) {
Scalar temperature = source.temperature({ijk, sourceComp});
fs.setTemperature(temperature);
}
const auto& h = FluidSystem::enthalpy(fs, phaseIdx, pvtRegionIdx);
Scalar mass_rate = source.rate({ijk, sourceComp})/ this->model().dofTotalVolume(globalDofIdx);
Scalar energy_rate = getValue(h)*mass_rate;
rate[Indices::contiEnergyEqIdx] += energy_rate;
}
}
}
}
// if requested, compensate systematic mass loss for cells which were "well
// behaved" in the last time step
if (this->enableDriftCompensation_) {
const auto& simulator = this->simulator();
const auto& model = this->model();
// we use a lower tolerance for the compensation too
// assure the added drift from the last step does not
// cause convergence issues on the current step
Scalar maxCompensation = model.newtonMethod().tolerance()/10;
Scalar poro = this->porosity(globalDofIdx, timeIdx);
Scalar dt = simulator.timeStepSize();
EqVector dofDriftRate = this->drift_[globalDofIdx];
dofDriftRate /= dt*model.dofTotalVolume(globalDofIdx);
// restrict drift compensation to the CNV tolerance
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx) {
Scalar cnv = std::abs(dofDriftRate[eqIdx])*dt*model.eqWeight(globalDofIdx, eqIdx)/poro;
if (cnv > maxCompensation) {
dofDriftRate[eqIdx] *= maxCompensation/cnv;
}
}
for (unsigned eqIdx = 0; eqIdx < numEq; ++ eqIdx)
rate[eqIdx] -= dofDriftRate[eqIdx];
}
}
/*!
* \brief Calculate the transmissibility multiplier due to porosity reduction.
*
* TODO: The API of this is a bit ad-hoc, it would be better to use context objects.
*/
template <class LhsEval>
LhsEval permFactTransMultiplier(const IntensiveQuantities& intQuants) const
{
OPM_TIMEBLOCK_LOCAL(permFactTransMultiplier);
if (!enableSaltPrecipitation)
return 1.0;
const auto& fs = intQuants.fluidState();
unsigned tableIdx = fs.pvtRegionIndex();
LhsEval porosityFactor = decay<LhsEval>(1. - fs.saltSaturation());
porosityFactor = min(porosityFactor, 1.0);
const auto& permfactTable = BrineModule::permfactTable(tableIdx);
return permfactTable.eval(porosityFactor, /*extrapolation=*/true);
}
// temporary solution to facilitate output of initial state from flow
const InitialFluidState& initialFluidState(unsigned globalDofIdx) const
{ return initialFluidStates_[globalDofIdx]; }
std::vector<InitialFluidState>& initialFluidStates()
{ return initialFluidStates_; }
const std::vector<InitialFluidState>& initialFluidStates() const
{ return initialFluidStates_; }
const EclipseIO& eclIO() const
{ return eclWriter_->eclIO(); }
void setSubStepReport(const SimulatorReportSingle& report)
{ return eclWriter_->setSubStepReport(report); }
void setSimulationReport(const SimulatorReport& report)
{ return eclWriter_->setSimulationReport(report); }
InitialFluidState boundaryFluidState(unsigned globalDofIdx, const int directionId) const
{
OPM_TIMEBLOCK_LOCAL(boundaryFluidState);
const auto& bcprop = this->simulator().vanguard().schedule()[this->episodeIndex()].bcprop;
if (bcprop.size() > 0) {
FaceDir::DirEnum dir = FaceDir::FromIntersectionIndex(directionId);
// index == 0: no boundary conditions for this
// global cell and direction
if (this->bcindex_(dir)[globalDofIdx] == 0)
return initialFluidStates_[globalDofIdx];
const auto& bc = bcprop[this->bcindex_(dir)[globalDofIdx]];
if (bc.bctype == BCType::DIRICHLET )
{
InitialFluidState fluidState;
const int pvtRegionIdx = this->pvtRegionIndex(globalDofIdx);
fluidState.setPvtRegionIndex(pvtRegionIdx);
switch (bc.component) {
case BCComponent::OIL:
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
throw std::logic_error("oil is not active and you're trying to add oil BC");
fluidState.setSaturation(FluidSystem::oilPhaseIdx, 1.0);
break;
case BCComponent::GAS:
if (!FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))
throw std::logic_error("gas is not active and you're trying to add gas BC");
fluidState.setSaturation(FluidSystem::gasPhaseIdx, 1.0);
break;
case BCComponent::WATER:
if (!FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
throw std::logic_error("water is not active and you're trying to add water BC");
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 1.0);
break;
case BCComponent::SOLVENT:
case BCComponent::POLYMER:
case BCComponent::NONE:
throw std::logic_error("you need to specify a valid component (OIL, WATER or GAS) when DIRICHLET type is set in BC");
}
fluidState.setTotalSaturation(1.0);
double pressure = initialFluidStates_[globalDofIdx].pressure(this->refPressurePhaseIdx_());
const auto pressure_input = bc.pressure;
if (pressure_input) {
pressure = *pressure_input;
}
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = this->materialLawParams(globalDofIdx);
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned activePhaseIdx = 0; activePhaseIdx < FluidSystem::numActivePhases(); ++activePhaseIdx) {
const auto phaseIdx = FluidSystem::activeToCanonicalPhaseIdx(activePhaseIdx);
fluidState.setPc(phaseIdx, pc[phaseIdx]);
if (Indices::oilEnabled)
fluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
fluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
fluidState.setPressure(phaseIdx, pressure);
}
double temperature = initialFluidStates_[globalDofIdx].temperature(0); // we only have one temperature
const auto temperature_input = bc.temperature;
if(temperature_input)
temperature = *temperature_input;
fluidState.setTemperature(temperature);
if (FluidSystem::enableDissolvedGas()) {
fluidState.setRs(0.0);
fluidState.setRv(0.0);
}
if (FluidSystem::enableDissolvedGasInWater()) {
fluidState.setRsw(0.0);
}
if (FluidSystem::enableVaporizedWater())
fluidState.setRvw(0.0);
for (unsigned activePhaseIdx = 0; activePhaseIdx < FluidSystem::numActivePhases(); ++activePhaseIdx) {
const auto phaseIdx = FluidSystem::activeToCanonicalPhaseIdx(activePhaseIdx);
const auto& b = FluidSystem::inverseFormationVolumeFactor(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setDensity(phaseIdx, rho);
if (enableEnergy) {
const auto& h = FluidSystem::enthalpy(fluidState, phaseIdx, pvtRegionIdx);
fluidState.setEnthalpy(phaseIdx, h);
}
}
fluidState.checkDefined();
return fluidState;
}
}
return initialFluidStates_[globalDofIdx];
}
const std::unique_ptr<EclWriterType>& eclWriter() const
{
return eclWriter_;
}
void setConvData(const std::vector<std::vector<int>>& data)
{
eclWriter_->mutableOutputModule().setCnvData(data);
}
/*!
* \brief Returns the maximum value of the gas dissolution factor at the current time
* for a given degree of freedom.
*/
Scalar maxGasDissolutionFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
return this->mixControls_.maxGasDissolutionFactor(timeIdx, globalDofIdx,
this->episodeIndex(),
this->pvtRegionIndex(globalDofIdx));
}
/*!
* \brief Returns the maximum value of the oil vaporization factor at the current
* time for a given degree of freedom.
*/
Scalar maxOilVaporizationFactor(unsigned timeIdx, unsigned globalDofIdx) const
{
return this->mixControls_.maxOilVaporizationFactor(timeIdx, globalDofIdx,
this->episodeIndex(),
this->pvtRegionIndex(globalDofIdx));
}
/*!
* \brief Return if the storage term of the first iteration is identical to the storage
* term for the solution of the previous time step.
*
* For quite technical reasons, the storage term cannot be recycled if either DRSDT
* or DRVDT are active. Nor if the porosity is changes between timesteps
* using a pore volume multiplier (i.e., poreVolumeMultiplier() != 1.0)
*/
bool recycleFirstIterationStorage() const
{
int episodeIdx = this->episodeIndex();
return !this->mixControls_.drsdtActive(episodeIdx) &&
!this->mixControls_.drvdtActive(episodeIdx) &&
this->rockCompPoroMultWc_.empty() &&
this->rockCompPoroMult_.empty();
}
/*!
* \copydoc FvBaseProblem::initial
*
* The reservoir problem uses a constant boundary condition for
* the whole domain.
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
unsigned globalDofIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
values.setPvtRegionIndex(pvtRegionIndex(context, spaceIdx, timeIdx));
values.assignNaive(initialFluidStates_[globalDofIdx]);
SolventModule::assignPrimaryVars(values,
enableSolvent ? this->solventSaturation_[globalDofIdx] : 0.0,
enableSolvent ? this->solventRsw_[globalDofIdx] : 0.0);
if constexpr (enablePolymer)
values[Indices::polymerConcentrationIdx] = this->polymer_.concentration[globalDofIdx];
if constexpr (enablePolymerMolarWeight)
values[Indices::polymerMoleWeightIdx]= this->polymer_.moleWeight[globalDofIdx];
if constexpr (enableBrine) {
if (enableSaltPrecipitation && values.primaryVarsMeaningBrine() == PrimaryVariables::BrineMeaning::Sp) {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltSaturation();
}
else {
values[Indices::saltConcentrationIdx] = initialFluidStates_[globalDofIdx].saltConcentration();
}
}
if constexpr (enableMICP){
values[Indices::microbialConcentrationIdx] = this->micp_.microbialConcentration[globalDofIdx];
values[Indices::oxygenConcentrationIdx]= this->micp_.oxygenConcentration[globalDofIdx];
values[Indices::ureaConcentrationIdx]= this->micp_.ureaConcentration[globalDofIdx];
values[Indices::calciteConcentrationIdx]= this->micp_.calciteConcentration[globalDofIdx];
values[Indices::biofilmConcentrationIdx]= this->micp_.biofilmConcentration[globalDofIdx];
}
values.checkDefined();
}
Scalar drsdtcon(unsigned elemIdx, int episodeIdx) const
{
return this->mixControls_.drsdtcon(elemIdx, episodeIdx,
this->pvtRegionIndex(elemIdx));
}
/*!
* \copydoc FvBaseProblem::boundary
*
* Reservoir simulation uses no-flow conditions as default for all boundaries.
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
OPM_TIMEBLOCK_LOCAL(eclProblemBoundary);
if (!context.intersection(spaceIdx).boundary())
return;
if constexpr (!enableEnergy || !enableThermalFluxBoundaries)
values.setNoFlow();
else {
// in the energy case we need to specify a non-trivial boundary condition
// because the geothermal gradient needs to be maintained. for this, we
// simply assume the initial temperature at the boundary and specify the
// thermal flow accordingly. in this context, "thermal flow" means energy
// flow due to a temerature gradient while assuming no-flow for mass
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
values.setThermalFlow(context, spaceIdx, timeIdx, this->initialFluidStates_[globalDofIdx] );
}
if (this->nonTrivialBoundaryConditions()) {
unsigned indexInInside = context.intersection(spaceIdx).indexInInside();
unsigned interiorDofIdx = context.interiorScvIndex(spaceIdx, timeIdx);
unsigned globalDofIdx = context.globalSpaceIndex(interiorDofIdx, timeIdx);
unsigned pvtRegionIdx = pvtRegionIndex(context, spaceIdx, timeIdx);
const auto [type, massrate] = this->boundaryCondition(globalDofIdx, indexInInside);
if (type == BCType::THERMAL)
values.setThermalFlow(context, spaceIdx, timeIdx, this->boundaryFluidState(globalDofIdx, indexInInside));
else if (type == BCType::FREE || type == BCType::DIRICHLET)
values.setFreeFlow(context, spaceIdx, timeIdx, this->boundaryFluidState(globalDofIdx, indexInInside));
else if (type == BCType::RATE)
values.setMassRate(massrate, pvtRegionIdx);
}
}
/*!
* \copydoc BlackOilBaseProblem::thresholdPressure
*/
Scalar thresholdPressure(unsigned elem1Idx, unsigned elem2Idx) const
{ return thresholdPressures_.thresholdPressure(elem1Idx, elem2Idx); }
const FlowThresholdPressure<TypeTag>& thresholdPressure() const
{ return thresholdPressures_; }
FlowThresholdPressure<TypeTag>& thresholdPressure()
{ return thresholdPressures_; }
const ModuleParams& moduleParams() const
{
return moduleParams_;
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(static_cast<FlowProblemType&>(*this));
serializer(mixControls_);
serializer(*eclWriter_);
}
protected:
void updateExplicitQuantities_(int episodeIdx, int timeStepSize, const bool first_step_after_restart) override
{
this->updateExplicitQuantities_(first_step_after_restart);
if constexpr (getPropValue<TypeTag, Properties::EnablePolymer>())
updateMaxPolymerAdsorption_();
mixControls_.updateExplicitQuantities(episodeIdx, timeStepSize);
}
void updateMaxPolymerAdsorption_()
{
// we need to update the max polymer adsoption data for all elements
this->updateProperty_("FlowProblemBlackoil::updateMaxPolymerAdsorption_() failed:",
[this](unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
this->updateMaxPolymerAdsorption_(compressedDofIdx,iq);
});
}
bool updateMaxPolymerAdsorption_(unsigned compressedDofIdx, const IntensiveQuantities& iq)
{
const Scalar pa = scalarValue(iq.polymerAdsorption());
auto& mpa = this->polymer_.maxAdsorption;
if (mpa[compressedDofIdx] < pa) {
mpa[compressedDofIdx] = pa;
return true;
} else {
return false;
}
}
void computeAndSetEqWeights_()
{
std::vector<Scalar> sumInvB(numPhases, 0.0);
const auto& gridView = this->gridView();
ElementContext elemCtx(this->simulator());
for(const auto& elem: elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& dofFluidState = this->initialFluidStates_[elemIdx];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
sumInvB[phaseIdx] += dofFluidState.invB(phaseIdx);
}
}
std::size_t numDof = this->model().numGridDof();
const auto& comm = this->simulator().vanguard().grid().comm();
comm.sum(sumInvB.data(),sumInvB.size());
Scalar numTotalDof = comm.sum(numDof);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
Scalar avgB = numTotalDof / sumInvB[phaseIdx];
unsigned solventCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
unsigned activeSolventCompIdx = Indices::canonicalToActiveComponentIndex(solventCompIdx);
this->model().setEqWeight(activeSolventCompIdx, avgB);
}
}
// update the parameters needed for DRSDT and DRVDT
bool updateCompositionChangeLimits_()
{
OPM_TIMEBLOCK(updateCompositionChangeLimits);
// update the "last Rs" values for all elements, including the ones in the ghost
// and overlap regions
int episodeIdx = this->episodeIndex();
std::array<bool,3> active{this->mixControls_.drsdtConvective(episodeIdx),
this->mixControls_.drsdtActive(episodeIdx),
this->mixControls_.drvdtActive(episodeIdx)};
if (!active[0] && !active[1] && !active[2]) {
return false;
}
this->updateProperty_("FlowProblemBlackoil::updateCompositionChangeLimits_()) failed:",
[this,episodeIdx,active](unsigned compressedDofIdx,
const IntensiveQuantities& iq)
{
const DimMatrix& perm = this->intrinsicPermeability(compressedDofIdx);
const Scalar distZ = active[0] ? this->simulator().vanguard().cellThickness(compressedDofIdx) : 0.0;
const int pvtRegionIdx = this->pvtRegionIndex(compressedDofIdx);
this->mixControls_.update(compressedDofIdx,
iq,
episodeIdx,
this->gravity_[dim - 1],
perm[dim - 1][dim - 1],
distZ,
pvtRegionIdx);
}
);
return true;
}
void readEclRestartSolution_()
{
// Throw an exception if the grid has LGRs. Refined grid are not supported for restart.
if(this->simulator().vanguard().grid().maxLevel() > 0) {
throw std::invalid_argument("Refined grids are not yet supported for restart ");
}
// Set the start time of the simulation
auto& simulator = this->simulator();
const auto& schedule = simulator.vanguard().schedule();
const auto& eclState = simulator.vanguard().eclState();
const auto& initconfig = eclState.getInitConfig();
const int restart_step = initconfig.getRestartStep();
{
simulator.setTime(schedule.seconds(restart_step));
simulator.startNextEpisode(simulator.startTime() + simulator.time(),
schedule.stepLength(restart_step));
simulator.setEpisodeIndex(restart_step);
}
this->eclWriter_->beginRestart();
Scalar dt = std::min(this->eclWriter_->restartTimeStepSize(), simulator.episodeLength());
simulator.setTimeStepSize(dt);
std::size_t numElems = this->model().numGridDof();
this->initialFluidStates_.resize(numElems);
if constexpr (enableSolvent) {
this->solventSaturation_.resize(numElems, 0.0);
this->solventRsw_.resize(numElems, 0.0);
}
if constexpr (enablePolymer)
this->polymer_.concentration.resize(numElems, 0.0);
if constexpr (enablePolymerMolarWeight) {
const std::string msg {"Support of the RESTART for polymer molecular weight "
"is not implemented yet. The polymer weight value will be "
"zero when RESTART begins"};
OpmLog::warning("NO_POLYMW_RESTART", msg);
this->polymer_.moleWeight.resize(numElems, 0.0);
}
if constexpr (enableMICP) {
this->micp_.resize(numElems);
}
// Initialize mixing controls before trying to set any lastRx valuesx
this->mixControls_.init(numElems, restart_step, eclState.runspec().tabdims().getNumPVTTables());
for (std::size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = this->initialFluidStates_[elemIdx];
elemFluidState.setPvtRegionIndex(pvtRegionIndex(elemIdx));
this->eclWriter_->outputModule().initHysteresisParams(simulator, elemIdx);
this->eclWriter_->outputModule().assignToFluidState(elemFluidState, elemIdx);
// Note: Function processRestartSaturations_() mutates the
// 'ssol' argument--the value from the restart file--if solvent
// is enabled. Then, store the updated solvent saturation into
// 'solventSaturation_'. Otherwise, just pass a dummy value to
// the function and discard the unchanged result. Do not index
// into 'solventSaturation_' unless solvent is enabled.
{
auto ssol = enableSolvent
? this->eclWriter_->outputModule().getSolventSaturation(elemIdx)
: Scalar(0);
this->processRestartSaturations_(elemFluidState, ssol);
if constexpr (enableSolvent) {
this->solventSaturation_[elemIdx] = ssol;
this->solventRsw_[elemIdx] = this->eclWriter_->outputModule().getSolventRsw(elemIdx);
}
}
// For CO2STORE and H2STORE we need to set the initial temperature for isothermal simulations
bool isThermal = eclState.getSimulationConfig().isThermal();
bool needTemperature = (eclState.runspec().co2Storage() || eclState.runspec().h2Storage());
if (!isThermal && needTemperature) {
const auto& fp = simulator.vanguard().eclState().fieldProps();
elemFluidState.setTemperature(fp.get_double("TEMPI")[elemIdx]);
}
this->mixControls_.updateLastValues(elemIdx, elemFluidState.Rs(), elemFluidState.Rv());
if constexpr (enablePolymer)
this->polymer_.concentration[elemIdx] = this->eclWriter_->outputModule().getPolymerConcentration(elemIdx);
if constexpr (enableMICP){
this->micp_.microbialConcentration[elemIdx] = this->eclWriter_->outputModule().getMicrobialConcentration(elemIdx);
this->micp_.oxygenConcentration[elemIdx] = this->eclWriter_->outputModule().getOxygenConcentration(elemIdx);
this->micp_.ureaConcentration[elemIdx] = this->eclWriter_->outputModule().getUreaConcentration(elemIdx);
this->micp_.biofilmConcentration[elemIdx] = this->eclWriter_->outputModule().getBiofilmConcentration(elemIdx);
this->micp_.calciteConcentration[elemIdx] = this->eclWriter_->outputModule().getCalciteConcentration(elemIdx);
}
// if we need to restart for polymer molecular weight simulation, we need to add related here
}
const int episodeIdx = this->episodeIndex();
this->mixControls_.updateMaxValues(episodeIdx, simulator.timeStepSize());
// assign the restart solution to the current solution. note that we still need
// to compute real initial solution after this because the initial fluid states
// need to be correct for stuff like boundary conditions.
auto& sol = this->model().solution(/*timeIdx=*/0);
const auto& gridView = this->gridView();
ElementContext elemCtx(simulator);
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
int elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
this->initial(sol[elemIdx], elemCtx, /*spaceIdx=*/0, /*timeIdx=*/0);
}
// make sure that the ghost and overlap entities exhibit the correct
// solution. alternatively, this could be done in the loop above by also
// considering non-interior elements. Since the initial() method might not work
// 100% correctly for such elements, let's play safe and explicitly synchronize
// using message passing.
this->model().syncOverlap();
this->eclWriter_->endRestart();
}
void readEquilInitialCondition_() override
{
const auto& simulator = this->simulator();
// initial condition corresponds to hydrostatic conditions.
EquilInitializer<TypeTag> equilInitializer(simulator, *(this->materialLawManager_));
std::size_t numElems = this->model().numGridDof();
this->initialFluidStates_.resize(numElems);
for (std::size_t elemIdx = 0; elemIdx < numElems; ++elemIdx) {
auto& elemFluidState = this->initialFluidStates_[elemIdx];
elemFluidState.assign(equilInitializer.initialFluidState(elemIdx));
}
}
void readExplicitInitialCondition_() override
{
const auto& simulator = this->simulator();
const auto& vanguard = simulator.vanguard();
const auto& eclState = vanguard.eclState();
const auto& fp = eclState.fieldProps();
bool has_swat = fp.has_double("SWAT");
bool has_sgas = fp.has_double("SGAS");
bool has_rs = fp.has_double("RS");
bool has_rv = fp.has_double("RV");
bool has_rvw = fp.has_double("RVW");
bool has_pressure = fp.has_double("PRESSURE");
bool has_salt = fp.has_double("SALT");
bool has_saltp = fp.has_double("SALTP");
// make sure all required quantities are enables
if (Indices::numPhases > 1) {
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !has_swat)
throw std::runtime_error("The ECL input file requires the presence of the SWAT keyword if "
"the water phase is active");
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !has_sgas && FluidSystem::phaseIsActive(oilPhaseIdx))
throw std::runtime_error("The ECL input file requires the presence of the SGAS keyword if "
"the gas phase is active");
}
if (!has_pressure)
throw std::runtime_error("The ECL input file requires the presence of the PRESSURE "
"keyword if the model is initialized explicitly");
if (FluidSystem::enableDissolvedGas() && !has_rs)
throw std::runtime_error("The ECL input file requires the RS keyword to be present if"
" dissolved gas is enabled");
if (FluidSystem::enableVaporizedOil() && !has_rv)
throw std::runtime_error("The ECL input file requires the RV keyword to be present if"
" vaporized oil is enabled");
if (FluidSystem::enableVaporizedWater() && !has_rvw)
throw std::runtime_error("The ECL input file requires the RVW keyword to be present if"
" vaporized water is enabled");
if (enableBrine && !has_salt)
throw std::runtime_error("The ECL input file requires the SALT keyword to be present if"
" brine is enabled and the model is initialized explicitly");
if (enableSaltPrecipitation && !has_saltp)
throw std::runtime_error("The ECL input file requires the SALTP keyword to be present if"
" salt precipitation is enabled and the model is initialized explicitly");
std::size_t numDof = this->model().numGridDof();
initialFluidStates_.resize(numDof);
std::vector<double> waterSaturationData;
std::vector<double> gasSaturationData;
std::vector<double> pressureData;
std::vector<double> rsData;
std::vector<double> rvData;
std::vector<double> rvwData;
std::vector<double> tempiData;
std::vector<double> saltData;
std::vector<double> saltpData;
if (FluidSystem::phaseIsActive(waterPhaseIdx) && Indices::numPhases > 1)
waterSaturationData = fp.get_double("SWAT");
else
waterSaturationData.resize(numDof);
if (FluidSystem::phaseIsActive(gasPhaseIdx) && FluidSystem::phaseIsActive(oilPhaseIdx))
gasSaturationData = fp.get_double("SGAS");
else
gasSaturationData.resize(numDof);
pressureData = fp.get_double("PRESSURE");
if (FluidSystem::enableDissolvedGas())
rsData = fp.get_double("RS");
if (FluidSystem::enableVaporizedOil())
rvData = fp.get_double("RV");
if (FluidSystem::enableVaporizedWater())
rvwData = fp.get_double("RVW");
// initial reservoir temperature
tempiData = fp.get_double("TEMPI");
// initial salt concentration data
if constexpr (enableBrine)
saltData = fp.get_double("SALT");
// initial precipitated salt saturation data
if constexpr (enableSaltPrecipitation)
saltpData = fp.get_double("SALTP");
// calculate the initial fluid states
for (std::size_t dofIdx = 0; dofIdx < numDof; ++dofIdx) {
auto& dofFluidState = initialFluidStates_[dofIdx];
dofFluidState.setPvtRegionIndex(pvtRegionIndex(dofIdx));
//////
// set temperature
//////
Scalar temperatureLoc = tempiData[dofIdx];
if (!std::isfinite(temperatureLoc) || temperatureLoc <= 0)
temperatureLoc = FluidSystem::surfaceTemperature;
dofFluidState.setTemperature(temperatureLoc);
//////
// set salt concentration
//////
if constexpr (enableBrine)
dofFluidState.setSaltConcentration(saltData[dofIdx]);
//////
// set precipitated salt saturation
//////
if constexpr (enableSaltPrecipitation)
dofFluidState.setSaltSaturation(saltpData[dofIdx]);
//////
// set saturations
//////
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx))
dofFluidState.setSaturation(FluidSystem::waterPhaseIdx,
waterSaturationData[dofIdx]);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)){
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)){
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
1.0
- waterSaturationData[dofIdx]);
}
else
dofFluidState.setSaturation(FluidSystem::gasPhaseIdx,
gasSaturationData[dofIdx]);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx))
dofFluidState.setSaturation(FluidSystem::oilPhaseIdx,
1.0
- waterSaturationData[dofIdx]
- gasSaturationData[dofIdx]);
//////
// set phase pressures
//////
Scalar pressure = pressureData[dofIdx]; // oil pressure (or gas pressure for water-gas system or water pressure for single phase)
// this assumes that capillary pressures only depend on the phase saturations
// and possibly on temperature. (this is always the case for ECL problems.)
std::array<Scalar, numPhases> pc = {0};
const auto& matParams = this->materialLawParams(dofIdx);
MaterialLaw::capillaryPressures(pc, matParams, dofFluidState);
Valgrind::CheckDefined(pressure);
Valgrind::CheckDefined(pc);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
if (Indices::oilEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[oilPhaseIdx]));
else if (Indices::gasEnabled)
dofFluidState.setPressure(phaseIdx, pressure + (pc[phaseIdx] - pc[gasPhaseIdx]));
else if (Indices::waterEnabled)
//single (water) phase
dofFluidState.setPressure(phaseIdx, pressure);
}
if (FluidSystem::enableDissolvedGas())
dofFluidState.setRs(rsData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
dofFluidState.setRs(0.0);
if (FluidSystem::enableVaporizedOil())
dofFluidState.setRv(rvData[dofIdx]);
else if (Indices::gasEnabled && Indices::oilEnabled)
dofFluidState.setRv(0.0);
if (FluidSystem::enableVaporizedWater())
dofFluidState.setRvw(rvwData[dofIdx]);
//////
// set invB_
//////
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
const auto& b = FluidSystem::inverseFormationVolumeFactor(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setInvB(phaseIdx, b);
const auto& rho = FluidSystem::density(dofFluidState, phaseIdx, pvtRegionIndex(dofIdx));
dofFluidState.setDensity(phaseIdx, rho);
}
}
}
void processRestartSaturations_(InitialFluidState& elemFluidState, Scalar& solventSaturation)
{
// each phase needs to be above certain value to be claimed to be existing
// this is used to recover some RESTART running with the defaulted single-precision format
const Scalar smallSaturationTolerance = 1.e-6;
Scalar sumSaturation = 0.0;
for (std::size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
if (elemFluidState.saturation(phaseIdx) < smallSaturationTolerance)
elemFluidState.setSaturation(phaseIdx, 0.0);
sumSaturation += elemFluidState.saturation(phaseIdx);
}
}
if constexpr (enableSolvent) {
if (solventSaturation < smallSaturationTolerance)
solventSaturation = 0.0;
sumSaturation += solventSaturation;
}
assert(sumSaturation > 0.0);
for (std::size_t phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (FluidSystem::phaseIsActive(phaseIdx)) {
const Scalar saturation = elemFluidState.saturation(phaseIdx) / sumSaturation;
elemFluidState.setSaturation(phaseIdx, saturation);
}
}
if constexpr (enableSolvent) {
solventSaturation = solventSaturation / sumSaturation;
}
}
void readInitialCondition_() override
{
FlowProblemType::readInitialCondition_();
if constexpr (enableSolvent || enablePolymer || enablePolymerMolarWeight || enableMICP)
this->readBlackoilExtentionsInitialConditions_(this->model().numGridDof(),
enableSolvent,
enablePolymer,
enablePolymerMolarWeight,
enableMICP);
}
void handleSolventBC(const BCProp::BCFace& bc, RateVector& rate) const override
{
if constexpr (!enableSolvent)
throw std::logic_error("solvent is disabled and you're trying to add solvent to BC");
rate[Indices::solventSaturationIdx] = bc.rate;
}
void handlePolymerBC(const BCProp::BCFace& bc, RateVector& rate) const override
{
if constexpr (!enablePolymer)
throw std::logic_error("polymer is disabled and you're trying to add polymer to BC");
rate[Indices::polymerConcentrationIdx] = bc.rate;
}
void updateExplicitQuantities_(const bool first_step_after_restart)
{
OPM_TIMEBLOCK(updateExplicitQuantities);
const bool invalidateFromMaxWaterSat = this->updateMaxWaterSaturation_();
const bool invalidateFromMinPressure = this->updateMinPressure_();
// update hysteresis and max oil saturation used in vappars
const bool invalidateFromHyst = this->updateHysteresis_();
const bool invalidateFromMaxOilSat = this->updateMaxOilSaturation_();
// deal with DRSDT and DRVDT
const bool invalidateDRDT = !first_step_after_restart && this->updateCompositionChangeLimits_();
// the derivatives may have changed
const bool invalidateIntensiveQuantities
= invalidateFromMaxWaterSat || invalidateFromMinPressure || invalidateFromHyst || invalidateFromMaxOilSat || invalidateDRDT;
if (invalidateIntensiveQuantities) {
OPM_TIMEBLOCK(beginTimeStepInvalidateIntensiveQuantities);
this->model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
}
this->updateRockCompTransMultVal_();
}
bool satfuncConsistencyRequirementsMet() const
{
if (const auto nph = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)
+ FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)
+ FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
nph < 2)
{
// Single phase runs don't need saturation functions and there's
// nothing to do here. Return 'true' to tell caller that the
// consistency requirements are Met.
return true;
}
const auto numSamplePoints = static_cast<std::size_t>
(Parameters::Get<Parameters::NumSatfuncConsistencySamplePoints>());
auto sfuncConsistencyChecks =
Satfunc::PhaseChecks::SatfuncConsistencyCheckManager<Scalar> {
numSamplePoints, this->simulator().vanguard().eclState(),
[&cmap = this->simulator().vanguard().cartesianIndexMapper()](const int elemIdx)
{ return cmap.cartesianIndex(elemIdx); }
};
const auto ioRank = 0;
const auto isIoRank = this->simulator().vanguard()
.grid().comm().rank() == ioRank;
sfuncConsistencyChecks.collectFailuresTo(ioRank)
.run(this->simulator().vanguard().grid().leafGridView(),
[&vg = this->simulator().vanguard(),
&emap = this->simulator().model().elementMapper()]
(const auto& elem)
{ return vg.gridIdxToEquilGridIdx(emap.index(elem)); });
using ViolationLevel = typename Satfunc::PhaseChecks::
SatfuncConsistencyCheckManager<Scalar>::ViolationLevel;
auto reportFailures = [&sfuncConsistencyChecks]
(const ViolationLevel level)
{
sfuncConsistencyChecks.reportFailures
(level, [](std::string_view record)
{ OpmLog::info(std::string { record }); });
};
if (sfuncConsistencyChecks.anyFailedStandardChecks()) {
if (isIoRank) {
OpmLog::warning("Saturation Function "
"End-point Consistency Problems");
reportFailures(ViolationLevel::Standard);
}
}
if (sfuncConsistencyChecks.anyFailedCriticalChecks()) {
if (isIoRank) {
OpmLog::error("Saturation Function "
"End-point Consistency Failures");
reportFailures(ViolationLevel::Critical);
}
// There are "critical" check failures. Report that consistency
// requirements are not Met.
return false;
}
// If we get here then there are no critical failures. Report
// Met = true, i.e., that the consistency requirements ARE met.
return true;
}
FlowThresholdPressure<TypeTag> thresholdPressures_;
std::vector<InitialFluidState> initialFluidStates_;
bool enableEclOutput_;
std::unique_ptr<EclWriterType> eclWriter_;
#if HAVE_DAMARIS
bool enableDamarisOutput_ = false ;
std::unique_ptr<DamarisWriterType> damarisWriter_;
#endif
MixingRateControls<FluidSystem> mixControls_;
ActionHandler<Scalar> actionHandler_;
ModuleParams moduleParams_;
};
} // namespace Opm
#endif // OPM_FLOW_PROBLEM_BLACK_HPP