opm-simulators/opm/models/io/vtkenergymodule.hpp

182 lines
5.9 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::VtkEnergyModule
*/
#ifndef OPM_VTK_ENERGY_MODULE_HPP
#define OPM_VTK_ENERGY_MODULE_HPP
#include <opm/material/common/MathToolbox.hpp>
#include <opm/models/io/baseoutputmodule.hh>
#include <opm/models/io/vtkenergyparams.hpp>
#include <opm/models/io/vtkmultiwriter.hh>
#include <opm/models/discretization/common/fvbaseparameters.hh>
#include <opm/models/utils/parametersystem.hpp>
#include <opm/models/utils/propertysystem.hh>
namespace Opm {
/*!
* \ingroup Vtk
*
* \brief VTK output module for quantities which make sense for models which
* assume thermal equilibrium.
*
* This module deals with the following quantities:
* - Specific enthalpy of all fluid phases
* - Specific internal energy of all fluid phases
* - Volumetric internal energy of the solid phase
* - Total thermal conductivity, i.e. the conductivity of the solid and all fluid phases
* combined
*/
template <class TypeTag>
class VtkEnergyModule : public BaseOutputModule<TypeTag>
{
using ParentType = BaseOutputModule<TypeTag>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using ScalarBuffer = typename ParentType::ScalarBuffer;
using PhaseBuffer = typename ParentType::PhaseBuffer;
static const int vtkFormat = getPropValue<TypeTag, Properties::VtkOutputFormat>();
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
using Toolbox = typename Opm::MathToolbox<Evaluation>;
using VtkMultiWriter = Opm::VtkMultiWriter<GridView, vtkFormat>;
public:
VtkEnergyModule(const Simulator& simulator)
: ParentType(simulator)
{
params_.read();
}
/*!
* \brief Register all run-time parameters for the Vtk output module.
*/
static void registerParameters()
{
VtkEnergyParams::registerParameters();
}
/*!
* \brief Allocate memory for the scalar fields we would like to
* write to the VTK file.
*/
void allocBuffers()
{
if (params_.enthalpyOutput_) {
this->resizePhaseBuffer_(enthalpy_);
}
if (params_.internalEnergyOutput_) {
this->resizePhaseBuffer_(internalEnergy_);
}
if (params_.solidInternalEnergyOutput_) {
this->resizeScalarBuffer_(solidInternalEnergy_);
}
if (params_.thermalConductivityOutput_) {
this->resizeScalarBuffer_(thermalConductivity_);
}
}
/*!
* \brief Modify the internal buffers according to the intensive quanties relevant
* for an element
*/
void processElement(const ElementContext& elemCtx)
{
if (!Parameters::Get<Parameters::EnableVtkOutput>()) {
return;
}
for (unsigned i = 0; i < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++i) {
unsigned I = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(i, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
if (params_.solidInternalEnergyOutput_) {
solidInternalEnergy_[I] = Toolbox::value(intQuants.solidInternalEnergy());
}
if (params_.thermalConductivityOutput_) {
thermalConductivity_[I] = Toolbox::value(intQuants.thermalConductivity());
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (params_.enthalpyOutput_) {
enthalpy_[phaseIdx][I] = Toolbox::value(fs.enthalpy(phaseIdx));
}
if (params_.internalEnergyOutput_) {
internalEnergy_[phaseIdx][I] = Toolbox::value(fs.internalEnergy(phaseIdx));
}
}
}
}
/*!
* \brief Add all buffers to the VTK output writer.
*/
void commitBuffers(BaseOutputWriter& baseWriter)
{
VtkMultiWriter* vtkWriter = dynamic_cast<VtkMultiWriter*>(&baseWriter);
if (!vtkWriter) {
return;
}
if (params_.solidInternalEnergyOutput_) {
this->commitScalarBuffer_(baseWriter, "internalEnergySolid", solidInternalEnergy_);
}
if (params_.thermalConductivityOutput_) {
this->commitScalarBuffer_(baseWriter, "thermalConductivity", thermalConductivity_);
}
if (params_.enthalpyOutput_) {
this->commitPhaseBuffer_(baseWriter, "enthalpy_%s", enthalpy_);
}
if (params_.internalEnergyOutput_) {
this->commitPhaseBuffer_(baseWriter, "internalEnergy_%s", internalEnergy_);
}
}
private:
VtkEnergyParams params_{};
PhaseBuffer enthalpy_{};
PhaseBuffer internalEnergy_{};
ScalarBuffer thermalConductivity_{};
ScalarBuffer solidInternalEnergy_{};
};
} // namespace Opm
#endif // OPM_VTK_ENERGY_MODULE_HPP