opm-simulators/opm/autodiff/BlackoilWellModel_impl.hpp
Andreas Lauser b5cddef928 flow: switch it to use the eWoms parameter system
this has several advanges:

- a consistent and complete help message is now printed by passing the
  -h or --help command line parameters. most notably this allows to
  generically implement tab completion of parameters for bash
- the full list of runtime parameters can now be printed before the simulator
  has been run.
- all runtime parameters understood by ebos can be specified
- no hacks to marry the two parameter systems anymore
- command parameters now follow the standard unix convention, i.e.,
  `--param-name=value` instead of `param_name=value`

on the negative side, some parameters have been renamed and the syntax
has changed so calls to `flow` that specify parameters must adapted.
2018-08-15 23:34:32 +02:00

1394 lines
49 KiB
C++

namespace Opm {
template<typename TypeTag>
BlackoilWellModel<TypeTag>::
BlackoilWellModel(Simulator& ebosSimulator,
const ModelParameters& param,
const bool terminal_output)
: ebosSimulator_(ebosSimulator)
, param_(param)
, terminal_output_(terminal_output)
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
{
const auto& eclState = ebosSimulator_.vanguard().eclState();
phase_usage_ = phaseUsageFromDeck(eclState);
const auto& gridView = ebosSimulator_.gridView();
// calculate the number of elements of the compressed sequential grid. this needs
// to be done in two steps because the dune communicator expects a reference as
// argument for sum()
number_of_cells_ = gridView.size(/*codim=*/0);
global_nc_ = gridView.comm().sum(number_of_cells_);
gravity_ = ebosSimulator_.problem().gravity()[2];
extractLegacyCellPvtRegionIndex_();
extractLegacyDepth_();
initial_step_ = true;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
beginReportStep(const int timeStepIdx)
{
const Grid& grid = ebosSimulator_.vanguard().grid();
const auto& defunct_well_names = ebosSimulator_.vanguard().defunctWellNames();
const auto& eclState = ebosSimulator_.vanguard().eclState();
wells_ecl_ = schedule().getWells(timeStepIdx);
// Create wells and well state.
// Pass empty dynamicListEconLimited class
// The closing of wells due to limites is
// handled by the wellTestState class
DynamicListEconLimited dynamic_list_econ_limited;
wells_manager_.reset( new WellsManager (eclState,
schedule(),
timeStepIdx,
Opm::UgGridHelpers::numCells(grid),
Opm::UgGridHelpers::globalCell(grid),
Opm::UgGridHelpers::cartDims(grid),
Opm::UgGridHelpers::dimensions(grid),
Opm::UgGridHelpers::cell2Faces(grid),
Opm::UgGridHelpers::beginFaceCentroids(grid),
dynamic_list_econ_limited,
grid.comm().size() > 1,
defunct_well_names) );
// Wells are active if they are active wells on at least
// one process.
wells_active_ = localWellsActive() ? 1 : 0;
wells_active_ = grid.comm().max(wells_active_);
// The well state initialize bhp with the cell pressure in the top cell.
// We must therefore provide it with updated cell pressures
size_t nc = number_of_cells_;
std::vector<double> cellPressures(nc, 0.0);
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.vanguard().gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
cellPressures[cellIdx] = p;
}
well_state_.init(wells(), cellPressures, &previous_well_state_, phase_usage_);
// handling MS well related
if (param_.use_multisegment_well_) { // if we use MultisegmentWell model
for (const auto& well : wells_ecl_) {
// TODO: this is acutally not very accurate, because sometimes a deck just claims a MS well
// while keep the well shut. More accurately, we should check if the well exisits in the Wells
// structure here
if (well->isMultiSegment(timeStepIdx) ) { // there is one well is MS well
well_state_.initWellStateMSWell(wells(), wells_ecl_, timeStepIdx, phase_usage_, previous_well_state_);
break;
}
}
}
// update the previous well state. This is used to restart failed steps.
previous_well_state_ = well_state_;
// Compute reservoir volumes for RESV controls.
rateConverter_.reset(new RateConverterType (phase_usage_,
std::vector<int>(number_of_cells_, 0)));
computeRESV(timeStepIdx);
// update VFP properties
vfp_properties_.reset (new VFPProperties (
schedule().getVFPInjTables(timeStepIdx),
schedule().getVFPProdTables(timeStepIdx)) );
}
// called at the beginning of a time step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
beginTimeStep(const int timeStepIdx, const double simulationTime) {
well_state_ = previous_well_state_;
// test wells
wellTesting(timeStepIdx, simulationTime);
// create the well container
well_container_ = createWellContainer(timeStepIdx);
// do the initialization for all the wells
// TODO: to see whether we can postpone of the intialization of the well containers to
// optimize the usage of the following several member variables
for (auto& well : well_container_) {
well->init(&phase_usage_, depth_, gravity_, number_of_cells_);
}
// calculate the efficiency factors for each well
calculateEfficiencyFactors();
if (has_polymer_)
{
const Grid& grid = ebosSimulator_.vanguard().grid();
if (PolymerModule::hasPlyshlog()) {
computeRepRadiusPerfLength(grid);
}
}
for (auto& well : well_container_) {
well->setVFPProperties(vfp_properties_.get());
}
// Close wells and completions due to economical reasons
for (auto& well : well_container_) {
well->closeCompletions(wellTestState_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::wellTesting(const int timeStepIdx, const double simulationTime) {
const auto& wtest_config = schedule().wtestConfig(timeStepIdx);
const auto& wellsForTesting = wellTestState_.updateWell(wtest_config, simulationTime);
// Do the well testing if enabled
if (wtest_config.size() > 0 && wellsForTesting.size() > 0) {
// solve the well equation isolated from the reservoir.
const int numComp = numComponents();
std::vector< Scalar > B_avg( numComp, Scalar() );
computeAverageFormationFactor(B_avg);
std::vector<WellInterfacePtr> well_container;
well_container.reserve(wellsForTesting.size());
for (auto& testWell : wellsForTesting) {
const std::string msg = std::string("well ") + testWell.first + std::string(" is tested");
OpmLog::info(msg);
// Finding the location of the well in wells_ecl
const int nw_wells_ecl = wells_ecl_.size();
int index_well = 0;
for (; index_well < nw_wells_ecl; ++index_well) {
if (testWell.first == wells_ecl_[index_well]->name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well == nw_wells_ecl) {
OPM_THROW(std::logic_error, "Could not find well " << testWell.first << " in wells_ecl ");
}
const Well* well_ecl = wells_ecl_[index_well];
// Finding the location of the well in wells struct.
const int nw = numWells();
int wellidx = -999;
for (int w = 0; w < nw; ++w) {
if (testWell.first == std::string(wells()->name[w])) {
wellidx = w;
break;
}
}
if (wellidx < 0) {
OPM_THROW(std::logic_error, "Could not find the well " << testWell.first << " in the well struct ");
}
// Use the pvtRegionIdx from the top cell
const int well_cell_top = wells()->well_cells[wells()->well_connpos[wellidx]];
const int pvtreg = pvt_region_idx_[well_cell_top];
if ( !well_ecl->isMultiSegment(timeStepIdx) || !param_.use_multisegment_well_) {
well_container.emplace_back(new StandardWell<TypeTag>(well_ecl, timeStepIdx, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
} else {
well_container.emplace_back(new MultisegmentWell<TypeTag>(well_ecl, timeStepIdx, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
}
}
for (auto& well : well_container) {
WellTestState wellTestStateForTheWellTest;
WellState wellStateCopy = well_state_;
well->init(&phase_usage_, depth_, gravity_, number_of_cells_);
const std::string& well_name = well->name();
const WellNode& well_node = wellCollection().findWellNode(well_name);
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
well->setWellEfficiencyFactor(well_efficiency_factor);
well->setVFPProperties(vfp_properties_.get());
well->updatePrimaryVariables(wellStateCopy);
well->initPrimaryVariablesEvaluation();
bool testWell = true;
// if a well is closed because all completions are closed, we need to check each completion
// individually. We first open all completions, then we close one by one by calling updateWellTestState
// untill the number of closed completions do not increase anymore.
while (testWell) {
const size_t numberOfClosedCompletions = wellTestStateForTheWellTest.sizeCompletions();
well->solveWellForTesting(ebosSimulator_, wellStateCopy, B_avg, terminal_output_);
well->updateWellTestState(wellStateCopy, simulationTime, wellTestStateForTheWellTest, /*writeMessageToOPMLog=*/ false);
well->closeCompletions(wellTestStateForTheWellTest);
// Stop testing if the well is closed or shut due to all completions shut
// Also check if number of completions has increased. If the number of closed completions do not increased
// we stop the testing.
if (wellTestStateForTheWellTest.sizeWells() > 0 || numberOfClosedCompletions == wellTestStateForTheWellTest.sizeCompletions())
testWell = false;
}
// update wellTestState if the well test succeeds
if (!wellTestStateForTheWellTest.hasWell(well->name(), WellTestConfig::Reason::ECONOMIC)) {
wellTestState_.openWell(well->name());
const std::string msg = std::string("well ") + well->name() + std::string(" is re-opened");
OpmLog::info(msg);
// also reopen completions
for (auto& completion : well->wellEcl()->getCompletions(timeStepIdx)) {
if (!wellTestStateForTheWellTest.hasCompletion(well->name(), completion.first))
wellTestState_.dropCompletion(well->name(), completion.first);
}
}
}
}
}
// only use this for restart.
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setRestartWellState(const WellState& well_state) { previous_well_state_ = well_state; }
// called at the end of a report step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
endReportStep() {
}
// called at the end of a report step
template<typename TypeTag>
const SimulatorReport&
BlackoilWellModel<TypeTag>::
lastReport() const {return last_report_; }
// called at the end of a time step
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
timeStepSucceeded(const double& simulationTime) {
// TODO: when necessary
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
for (const auto& well : well_container_) {
well->calculateReservoirRates(well_state_);
}
updateWellTestState(simulationTime, wellTestState_);
previous_well_state_ = well_state_;
}
template<typename TypeTag>
std::vector<typename BlackoilWellModel<TypeTag>::WellInterfacePtr >
BlackoilWellModel<TypeTag>::
createWellContainer(const int time_step)
{
std::vector<WellInterfacePtr> well_container;
const int nw = numWells();
if (nw > 0) {
well_container.reserve(nw);
// With the following way, it will have the same order with wells struct
// Hopefully, it can generate the same residual history with master branch
for (int w = 0; w < nw; ++w) {
const std::string well_name = std::string(wells()->name[w]);
// finding the location of the well in wells_ecl
const int nw_wells_ecl = wells_ecl_.size();
int index_well = 0;
for (; index_well < nw_wells_ecl; ++index_well) {
if (well_name == wells_ecl_[index_well]->name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well == nw_wells_ecl) {
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
}
const Well* well_ecl = wells_ecl_[index_well];
// well is closed due to economical reasons
if (wellTestState_.hasWell(well_name, WellTestConfig::Reason::ECONOMIC)) {
if( well_ecl->getAutomaticShutIn() ) {
// shut wells are not added to the well container
well_state_.bhp()[w] = 0;
const int np = numPhases();
for (int p = 0; p < np; ++p) {
well_state_.wellRates()[np * w + p] = 0;
}
continue;
}
else {
// close wells are added to the container but marked as closed
struct WellControls* well_controls = wells()->ctrls[w];
well_controls_stop_well(well_controls);
}
}
// Use the pvtRegionIdx from the top cell
const int well_cell_top = wells()->well_cells[wells()->well_connpos[w]];
const int pvtreg = pvt_region_idx_[well_cell_top];
if ( !well_ecl->isMultiSegment(time_step) || !param_.use_multisegment_well_) {
well_container.emplace_back(new StandardWell<TypeTag>(well_ecl, time_step, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
} else {
well_container.emplace_back(new MultisegmentWell<TypeTag>(well_ecl, time_step, wells(),
param_, *rateConverter_, pvtreg, numComponents() ) );
}
}
}
return well_container;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assemble(const int iterationIdx,
const double dt)
{
last_report_ = SimulatorReport();
if ( ! wellsActive() ) {
return;
}
updatePerforationIntensiveQuantities();
if (iterationIdx == 0) {
calculateExplicitQuantities();
prepareTimeStep();
}
updateWellControls();
// Set the well primary variables based on the value of well solutions
initPrimaryVariablesEvaluation();
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
// solve the well equations as a pre-processing step
last_report_ = solveWellEq(dt);
if (initial_step_) {
// update the explicit quantities to get the initial fluid distribution in the well correct.
calculateExplicitQuantities();
prepareTimeStep();
last_report_ = solveWellEq(dt);
initial_step_ = false;
}
// TODO: should we update the explicit related here again, or even prepareTimeStep().
// basically, this is a more updated state from the solveWellEq based on fixed
// reservoir state, will tihs be a better place to inialize the explict information?
}
assembleWellEq(dt, false);
last_report_.converged = true;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
assembleWellEq(const double dt,
bool only_wells)
{
for (auto& well : well_container_) {
well->assembleWellEq(ebosSimulator_, dt, well_state_, only_wells);
}
}
// applying the well residual to reservoir residuals
// r = r - duneC_^T * invDuneD_ * resWell_
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
apply( BVector& r) const
{
if ( ! localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
well->apply(r);
}
}
// Ax = A x - C D^-1 B x
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
// TODO: do we still need localWellsActive()?
if ( ! localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
well->apply(x, Ax);
}
}
// Ax = Ax - alpha * C D^-1 B x
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
{
if ( ! localWellsActive() ) {
return;
}
if( scaleAddRes_.size() != Ax.size() ) {
scaleAddRes_.resize( Ax.size() );
}
scaleAddRes_ = 0.0;
// scaleAddRes_ = - C D^-1 B x
apply( x, scaleAddRes_ );
// Ax = Ax + alpha * scaleAddRes_
Ax.axpy( alpha, scaleAddRes_ );
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
recoverWellSolutionAndUpdateWellState(const BVector& x)
{
if (!localWellsActive())
return;
for (auto& well : well_container_) {
well->recoverWellSolutionAndUpdateWellState(x, well_state_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
resetWellControlFromState() const
{
for (auto& well : well_container_) {
WellControls* wc = well->wellControls();
well_controls_set_current( wc, well_state_.currentControls()[well->indexOfWell()]);
}
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
wellsActive() const
{
return wells_active_;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setWellsActive(const bool wells_active)
{
wells_active_ = wells_active;
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
localWellsActive() const
{
return numWells() > 0;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
initPrimaryVariablesEvaluation() const
{
for (auto& well : well_container_) {
well->initPrimaryVariablesEvaluation();
}
}
template<typename TypeTag>
SimulatorReport
BlackoilWellModel<TypeTag>::
solveWellEq(const double dt)
{
const int nw = numWells();
WellState well_state0 = well_state_;
const int numComp = numComponents();
std::vector< Scalar > B_avg( numComp, Scalar() );
computeAverageFormationFactor(B_avg);
const int max_iter = param_.max_welleq_iter_;
int it = 0;
bool converged;
do {
assembleWellEq(dt, true);
//std::cout << "well convergence only wells " << std::endl;
converged = getWellConvergence(B_avg);
// checking whether the group targets are converged
if (wellCollection().groupControlActive()) {
converged = converged && wellCollection().groupTargetConverged(well_state_.wellRates());
}
if (converged) {
break;
}
++it;
if( localWellsActive() )
{
for (auto& well : well_container_) {
well->solveEqAndUpdateWellState(well_state_);
}
}
// updateWellControls uses communication
// Therefore the following is executed if there
// are active wells anywhere in the global domain.
if( wellsActive() )
{
updateWellControls();
initPrimaryVariablesEvaluation();
}
} while (it < max_iter);
if (converged) {
if ( terminal_output_ ) {
OpmLog::debug("Well equation solution gets converged with " + std::to_string(it) + " iterations");
}
} else {
if ( terminal_output_ ) {
OpmLog::debug("Well equation solution failed in getting converged with " + std::to_string(it) + " iterations");
}
well_state_ = well_state0;
updatePrimaryVariables();
// also recover the old well controls
for (int w = 0; w < nw; ++w) {
WellControls* wc = well_container_[w]->wellControls();
well_controls_set_current(wc, well_state_.currentControls()[w]);
}
}
SimulatorReport report;
report.converged = converged;
report.total_well_iterations = it;
return report;
}
template<typename TypeTag>
bool
BlackoilWellModel<TypeTag>::
getWellConvergence(const std::vector<Scalar>& B_avg) const
{
ConvergenceReport report;
for (const auto& well : well_container_) {
report += well->getWellConvergence(B_avg);
}
// checking NaN residuals
{
bool nan_residual_found = report.nan_residual_found;
const auto& grid = ebosSimulator_.vanguard().grid();
int value = nan_residual_found ? 1 : 0;
nan_residual_found = grid.comm().max(value);
if (nan_residual_found) {
for (const auto& well : report.nan_residual_wells) {
OpmLog::debug("NaN residual found with phase " + well.phase_name + " for well " + well.well_name);
}
OPM_THROW(Opm::NumericalIssue, "NaN residual found!");
}
}
// checking too large residuals
{
bool too_large_residual_found = report.too_large_residual_found;
const auto& grid = ebosSimulator_.vanguard().grid();
int value = too_large_residual_found ? 1 : 0;
too_large_residual_found = grid.comm().max(value);
if (too_large_residual_found) {
for (const auto& well : report.too_large_residual_wells) {
OpmLog::debug("Too large residual found with phase " + well.phase_name + " fow well " + well.well_name);
}
OPM_THROW(Opm::NumericalIssue, "Too large residual found!");
}
}
// checking convergence
bool converged_well = report.converged;
{
const auto& grid = ebosSimulator_.vanguard().grid();
int value = converged_well ? 1 : 0;
converged_well = grid.comm().min(value);
}
return converged_well;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateExplicitQuantities() const
{
for (auto& well : well_container_) {
well->calculateExplicitQuantities(ebosSimulator_, well_state_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWellControls()
{
// Even if there no wells active locally, we cannot
// return as the Destructor of the WellSwitchingLogger
// uses global communication. For no well active globally
// we simply return.
if( !wellsActive() ) return ;
#if HAVE_OPENMP
#endif // HAVE_OPENMP
wellhelpers::WellSwitchingLogger logger;
for (const auto& well : well_container_) {
well->updateWellControl(well_state_, logger);
}
updateGroupControls();
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const
{
for (const auto& well : well_container_) {
well->updateWellTestState(well_state_, simulationTime, wellTestState, /*writeMessageToOPMLog=*/ true);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeWellPotentials(std::vector<double>& well_potentials)
{
// number of wells and phases
const int nw = numWells();
const int np = numPhases();
well_potentials.resize(nw * np, 0.0);
for (const auto& well : well_container_) {
std::vector<double> potentials;
well->computeWellPotentials(ebosSimulator_, well_state_, potentials);
// putting the sucessfully calculated potentials to the well_potentials
for (int p = 0; p < np; ++p) {
well_potentials[well->indexOfWell() * np + p] = std::abs(potentials[p]);
}
} // end of for (int w = 0; w < nw; ++w)
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
prepareTimeStep()
{
if ( wellCollection().havingVREPGroups() ) {
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
}
// after restarting, the well_controls can be modified while
// the well_state still uses the old control index
// we need to synchronize these two.
// keep in mind that we set the control index of well_state to be the same with
// with the wellControls from the deck when we create well_state at the beginning of the report step
resetWellControlFromState();
// process group control related
prepareGroupControl();
// since the controls are all updated, we should update well_state accordingly
for (const auto& well : well_container_) {
const int w = well->indexOfWell();
WellControls* wc = well->wellControls();
const int control = well_controls_get_current(wc);
well_state_.currentControls()[w] = control;
// TODO: for VFP control, the perf_densities are still zero here, investigate better
// way to handle it later.
well->updateWellStateWithTarget(well_state_);
// The wells are not considered to be newly added
// for next time step
if (well_state_.isNewWell(w) ) {
well_state_.setNewWell(w, false);
}
} // end of for (int w = 0; w < nw; ++w)
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
prepareGroupControl()
{
// group control related processing
if (wellCollection().groupControlActive()) {
for (const auto& well : well_container_) {
WellControls* wc = well->wellControls();
WellNode& well_node = wellCollection().findWellNode(well->name());
// handling the situation that wells do not have a valid control
// it happens the well specified with GRUP and restarting due to non-convergencing
// putting the well under group control for this situation
int ctrl_index = well_controls_get_current(wc);
const int group_control_index = well_node.groupControlIndex();
if (group_control_index >= 0 && ctrl_index < 0) {
// put well under group control
well_controls_set_current(wc, group_control_index);
well_state_.currentControls()[well->indexOfWell()] = group_control_index;
}
// Final step, update whehter the well is under group control or individual control
// updated ctrl_index from the well control
ctrl_index = well_controls_get_current(wc);
if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
if (wellCollection().requireWellPotentials()) {
// calculate the well potentials
std::vector<double> well_potentials;
computeWellPotentials(well_potentials);
// update/setup guide rates for each well based on the well_potentials
// TODO: this is one of two places that still need Wells struct. In this function, only the well names
// well types are used, probably the order of the wells to locate the correct values in well_potentials.
wellCollection().setGuideRatesWithPotentials(wells(), phase_usage_, well_potentials);
}
applyVREPGroupControl();
if (!wellCollection().groupControlApplied()) {
wellCollection().applyGroupControls();
} else {
wellCollection().updateWellTargets(well_state_.wellRates());
}
}
}
template<typename TypeTag>
const WellCollection&
BlackoilWellModel<TypeTag>::
wellCollection() const
{
return wells_manager_->wellCollection();
}
template<typename TypeTag>
WellCollection&
BlackoilWellModel<TypeTag>::
wellCollection()
{
return wells_manager_->wellCollection();
}
template<typename TypeTag>
const typename BlackoilWellModel<TypeTag>::WellState&
BlackoilWellModel<TypeTag>::
wellState() const { return well_state_; }
template<typename TypeTag>
const typename BlackoilWellModel<TypeTag>::WellState&
BlackoilWellModel<TypeTag>::
wellState(const WellState& well_state OPM_UNUSED) const { return wellState(); }
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
calculateEfficiencyFactors()
{
if ( !localWellsActive() ) {
return;
}
for (auto& well : well_container_) {
const std::string& well_name = well->name();
const WellNode& well_node = wellCollection().findWellNode(well_name);
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
well->setWellEfficiencyFactor(well_efficiency_factor);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeWellVoidageRates(std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs) const
{
if ( !localWellsActive() ) {
return;
}
// TODO: for now, we store the voidage rates for all the production wells.
// For injection wells, the rates are stored as zero.
// We only store the conversion coefficients for all the injection wells.
// Later, more delicate model will be implemented here.
// And for the moment, group control can only work for serial running.
const int nw = numWells();
const int np = numPhases();
// we calculate the voidage rate for each well, that means the sum of all the phases.
well_voidage_rates.resize(nw, 0);
// store the conversion coefficients, while only for the use of injection wells.
voidage_conversion_coeffs.resize(nw * np, 1.0);
std::vector<double> well_rates(np, 0.0);
std::vector<double> convert_coeff(np, 1.0);
for (auto& well : well_container_) {
const bool is_producer = well->wellType() == PRODUCER;
const int well_cell_top =well->cells()[0];
const int w = well->indexOfWell();
const int pvtRegionIdx = pvt_region_idx_[well_cell_top];
// not sure necessary to change all the value to be positive
if (is_producer) {
std::transform(well_state_.wellRates().begin() + np * w,
well_state_.wellRates().begin() + np * (w + 1),
well_rates.begin(), std::negate<double>());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
convert_coeff.begin(), 0.0);
} else {
// TODO: Not sure whether will encounter situation with all zero rates
// and whether it will cause problem here.
std::copy(well_state_.wellRates().begin() + np * w,
well_state_.wellRates().begin() + np * (w + 1),
well_rates.begin());
// the average hydrocarbon conditions of the whole field will be used
const int fipreg = 0; // Not considering FIP for the moment.
rateConverter_->calcCoeff(fipreg, pvtRegionIdx, convert_coeff);
std::copy(convert_coeff.begin(), convert_coeff.end(),
voidage_conversion_coeffs.begin() + np * w);
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
applyVREPGroupControl()
{
if ( wellCollection().havingVREPGroups() ) {
std::vector<double> well_voidage_rates;
std::vector<double> voidage_conversion_coeffs;
computeWellVoidageRates(well_voidage_rates, voidage_conversion_coeffs);
wellCollection().applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
// for the wells under group control, update the control index for the well_state_ and well_controls
for (const WellNode* well_node : wellCollection().getLeafNodes()) {
if (well_node->isInjector() && !well_node->individualControl()) {
const int well_index = well_node->selfIndex();
well_state_.currentControls()[well_index] = well_node->groupControlIndex();
WellControls* wc = well_container_[well_index]->wellControls();
well_controls_set_current(wc, well_node->groupControlIndex());
}
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updateGroupControls()
{
if (wellCollection().groupControlActive()) {
for (auto& well : well_container_) {
// update whether well is under group control
// get well node in the well collection
WellNode& well_node = wellCollection().findWellNode(well->name());
// update whehter the well is under group control or individual control
const int current = well_state_.currentControls()[well->indexOfWell()];
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
// under group control
well_node.setIndividualControl(false);
} else {
// individual control
well_node.setIndividualControl(true);
}
}
applyVREPGroupControl();
// upate the well targets following group controls
// it will not change the control mode, only update the targets
wellCollection().updateWellTargets(well_state_.wellRates());
for (auto& well : well_container_) {
well->updateWellStateWithTarget(well_state_);
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const
{
if (global_cell) {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
}
}
else {
for (int i = 0; i < number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(i, i));
}
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeRepRadiusPerfLength(const Grid& grid)
{
// TODO, the function does not work for parallel running
// to be fixed later.
const int* global_cell = Opm::UgGridHelpers::globalCell(grid);
std::map<int,int> cartesian_to_compressed;
setupCompressedToCartesian(global_cell, number_of_cells_,
cartesian_to_compressed);
for (const auto& well : well_container_) {
well->computeRepRadiusPerfLength(grid, cartesian_to_compressed);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeAverageFormationFactor(std::vector<double>& B_avg) const
{
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& gridView = grid.leafGridView();
ElementContext elemCtx(ebosSimulator_);
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt; ++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
{
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
auto& B = B_avg[ compIdx ];
B += 1 / fs.invB(phaseIdx).value();
}
if (has_solvent_) {
auto& B = B_avg[solventSaturationIdx];
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
}
}
// compute global average
grid.comm().sum(B_avg.data(), B_avg.size());
for(auto& bval: B_avg)
{
bval/=global_nc_;
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updatePrimaryVariables()
{
for (const auto& well : well_container_) {
well->updatePrimaryVariables(well_state_);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::extractLegacyCellPvtRegionIndex_()
{
const auto& grid = ebosSimulator_.vanguard().grid();
const auto& eclProblem = ebosSimulator_.problem();
const unsigned numCells = grid.size(/*codim=*/0);
pvt_region_idx_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
pvt_region_idx_[cellIdx] =
eclProblem.pvtRegionIndex(cellIdx);
}
}
// The number of components in the model.
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>::numComponents() const
{
if (numPhases() == 2) {
return 2;
}
int numComp = FluidSystem::numComponents;
if (has_solvent_) {
numComp ++;
}
return numComp;
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>:: numWells() const
{
return wells() ? wells()->number_of_wells : 0;
}
template<typename TypeTag>
int
BlackoilWellModel<TypeTag>:: numPhases() const
{
return wells() ? wells()->number_of_phases : 1;
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::extractLegacyDepth_()
{
const auto& grid = ebosSimulator_.vanguard().grid();
const unsigned numCells = grid.size(/*codim=*/0);
depth_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
depth_[cellIdx] =
grid.cellCenterDepth(cellIdx);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
updatePerforationIntensiveQuantities() {
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
elemIt != elemEndIt;
++elemIt)
{
elemCtx.updatePrimaryStencil(*elemIt);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
}
}
template<typename TypeTag>
void
BlackoilWellModel<TypeTag>::
computeRESV(const std::size_t step)
{
typedef SimFIBODetails::WellMap WellMap;
const WellMap& wmap = SimFIBODetails::mapWells(wells_ecl_);
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells(), step, wmap);
int global_number_resv_wells = resv_wells.size();
global_number_resv_wells = ebosSimulator_.gridView().comm().sum(global_number_resv_wells);
if ( global_number_resv_wells > 0 )
{
rateConverter_->template defineState<ElementContext>(ebosSimulator_);
}
if (! resv_wells.empty()) {
const PhaseUsage& pu = phase_usage_;
const std::vector<double>::size_type np = pu.num_phases;
std::vector<double> distr (np);
std::vector<double> hrates(np);
for (std::vector<int>::const_iterator
rp = resv_wells.begin(), e = resv_wells.end();
rp != e; ++rp)
{
WellControls* ctrl = wells()->ctrls[*rp];
const bool is_producer = wells()->type[*rp] == PRODUCER;
const int well_cell_top = wells()->well_cells[wells()->well_connpos[*rp]];
const int pvtreg = pvt_region_idx_[well_cell_top];
// RESV control mode, all wells
{
const int rctrl = SimFIBODetails::resv_control(ctrl);
if (0 <= rctrl) {
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_->calcCoeff(fipreg, pvtreg, distr);
if (!is_producer) { // injectors
well_controls_assert_number_of_phases(ctrl, np);
// original distr contains 0 and 1 to indicate phases under control
const double* old_distr = well_controls_get_current_distr(ctrl);
for (size_t p = 0; p < np; ++p) {
distr[p] *= old_distr[p];
}
}
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
}
}
// RESV control, WCONHIST wells. A bit of duplicate
// work, regrettably.
if (is_producer && wells()->name[*rp] != 0) {
WellMap::const_iterator i = wmap.find(wells()->name[*rp]);
if (i != wmap.end()) {
const auto* wp = i->second;
const WellProductionProperties& p =
wp->getProductionProperties(step);
if (! p.predictionMode) {
// History matching (WCONHIST/RESV)
SimFIBODetails::historyRates(pu, p, hrates);
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_->calcCoeff(fipreg, pvtreg, distr);
// WCONHIST/RESV target is sum of all
// observed phase rates translated to
// reservoir conditions. Recall sign
// convention: Negative for producers.
std::vector<double> hrates_resv(np);
rateConverter_->calcReservoirVoidageRates(fipreg, pvtreg, hrates, hrates_resv);
const double target = -std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
well_controls_clear(ctrl);
well_controls_assert_number_of_phases(ctrl, int(np));
static const double invalid_alq = -std::numeric_limits<double>::max();
static const int invalid_vfp = -std::numeric_limits<int>::max();
const int ok_resv =
well_controls_add_new(RESERVOIR_RATE, target,
invalid_alq, invalid_vfp,
& distr[0], ctrl);
// For WCONHIST the BHP limit is set to 1 atm.
// or a value specified using WELTARG
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
const int ok_bhp =
well_controls_add_new(BHP, bhp_limit,
invalid_alq, invalid_vfp,
NULL, ctrl);
if (ok_resv != 0 && ok_bhp != 0) {
well_state_.currentControls()[*rp] = 0;
well_controls_set_current(ctrl, 0);
}
}
}
}
}
}
if( wells() )
{
for (int w = 0, nw = numWells(); w < nw; ++w) {
WellControls* ctrl = wells()->ctrls[w];
const bool is_producer = wells()->type[w] == PRODUCER;
if (!is_producer && wells()->name[w] != 0) {
WellMap::const_iterator i = wmap.find(wells()->name[w]);
if (i != wmap.end()) {
const auto* wp = i->second;
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
if (!injector.predictionMode) {
//History matching WCONINJEH
static const double invalid_alq = -std::numeric_limits<double>::max();
static const int invalid_vfp = -std::numeric_limits<int>::max();
// For WCONINJEH the BHP limit is set to a large number
// or a value specified using WELTARG
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits<double>::max();
const int ok_bhp =
well_controls_add_new(BHP, bhp_limit,
invalid_alq, invalid_vfp,
NULL, ctrl);
if (!ok_bhp) {
OPM_THROW(std::runtime_error, "Failed to add well control.");
}
}
}
}
}
}
}
} // namespace Opm