opm-simulators/opm/autodiff/SimulatorBase.hpp
2018-02-10 08:33:33 +01:00

236 lines
9.7 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2015 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORBASE_HEADER_INCLUDED
#define OPM_SIMULATORBASE_HEADER_INCLUDED
#include <opm/material/densead/Math.hpp>
#include <opm/autodiff/DuneMatrix.hpp>
#include <opm/autodiff/SimulatorFullyImplicitBlackoilOutput.hpp>
#include <opm/common/utility/parameters/ParameterGroup.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/BlackoilModel.hpp>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/grid/UnstructuredGrid.h>
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/pressure/flow_bc.h>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/simulators/timestepping/AdaptiveSimulatorTimer.hpp>
#include <opm/grid/utility/StopWatch.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/miscUtilitiesBlackoil.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
#include <opm/core/transport/reorder/TransportSolverCompressibleTwophaseReorder.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/ScheduleEnums.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/WellProductionProperties.hpp>
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp>
#include <algorithm>
#include <cstddef>
#include <cassert>
#include <functional>
#include <memory>
#include <numeric>
#include <fstream>
#include <iostream>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
namespace Opm
{
template <class Simulator>
struct SimulatorTraits;
/// Class collecting all necessary components for a two-phase simulation.
template <class Implementation>
class SimulatorBase
{
typedef SimulatorTraits<Implementation> Traits;
public:
typedef typename Traits::ReservoirState ReservoirState;
typedef typename Traits::WellState WellState;
typedef typename Traits::OutputWriter OutputWriter;
typedef typename Traits::Grid Grid;
typedef typename Traits::Solver Solver;
typedef typename Traits::WellModel WellModel;
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] grid grid data structure
/// \param[in] geo derived geological properties
/// \param[in] props fluid and rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] linsolver linear solver
/// \param[in] gravity if non-null, gravity vector
/// \param[in] disgas true for dissolved gas option
/// \param[in] vapoil true for vaporized oil option
/// \param[in] eclipse_state the object which represents an internalized ECL deck
/// \param[in] output_writer
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
SimulatorBase(const ParameterGroup& param,
const Grid& grid,
DerivedGeology& geo,
BlackoilPropsAdFromDeck& props,
const RockCompressibility* rock_comp_props,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity,
const bool disgas,
const bool vapoil,
std::shared_ptr<EclipseState> eclipse_state,
std::shared_ptr<Schedule> schedule,
std::shared_ptr<SummaryConfig> summary_config,
OutputWriter& output_writer,
const std::vector<double>& threshold_pressures_by_face,
const std::unordered_set<std::string>& defunct_well_names);
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \return simulation report, with timing data
SimulatorReport run(SimulatorTimer& timer,
ReservoirState& state);
protected:
Implementation& asImpl() { return *static_cast<Implementation*>(this); }
const Implementation& asImpl() const { return *static_cast<const Implementation*>(this); }
void handleAdditionalWellInflow(SimulatorTimer& timer,
WellsManager& wells_manager,
WellState& well_state,
const Wells* wells);
std::unique_ptr<Solver> createSolver(const WellModel& well_model);
void
computeRESV(const std::size_t step,
const Wells* wells,
const BlackoilState& x,
WellState& xw);
void
FIPUnitConvert(const UnitSystem& units,
std::vector<std::vector<double> >& fip);
void
FIPUnitConvert(const UnitSystem& units,
std::vector<double>& fip);
std::vector<double>
FIPTotals(const std::vector<std::vector<double> >& fip, const ReservoirState& state);
void
outputFluidInPlace(const std::vector<double>& oip, const std::vector<double>& cip, const UnitSystem& units, const int reg);
void updateListEconLimited(const std::unique_ptr<Solver>& solver,
const Schedule& schedule,
const int current_step,
const Wells* wells,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const;
void initHysteresisParams(ReservoirState& state);
// Data.
typedef RateConverter::
SurfaceToReservoirVoidage< BlackoilPropsAdFromDeck::FluidSystem,
std::vector<int> > RateConverterType;
typedef typename Traits::Model Model;
typedef typename Model::ModelParameters ModelParameters;
typedef typename Solver::SolverParameters SolverParameters;
const ParameterGroup param_;
ModelParameters model_param_;
SolverParameters solver_param_;
// Observed objects.
const Grid& grid_;
BlackoilPropsAdFromDeck& props_;
const RockCompressibility* rock_comp_props_;
const double* gravity_;
// Solvers
DerivedGeology& geo_;
NewtonIterationBlackoilInterface& solver_;
// Misc. data
std::vector<int> allcells_;
const bool has_disgas_;
const bool has_vapoil_;
bool terminal_output_;
// eclipse_state
std::shared_ptr<EclipseState> eclipse_state_;
std::shared_ptr<Schedule> schedule_;
std::shared_ptr<SummaryConfig> summary_config_;
// output_writer
OutputWriter& output_writer_;
RateConverterType rateConverter_;
// Threshold pressures.
std::vector<double> threshold_pressures_by_face_;
// Whether this a parallel simulation or not
bool is_parallel_run_;
// The names of wells that should be defunct
// (e.g. in a parallel run when they are handeled by
// a different process)
std::unordered_set<std::string> defunct_well_names_;
};
} // namespace Opm
#include "SimulatorBase_impl.hpp"
#endif // OPM_SIMULATORBASE_HEADER_INCLUDED