mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 09:51:57 -06:00
349 lines
15 KiB
C++
349 lines
15 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2016 - 2017 IRIS AS.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef OPM_STANDARDWELL_HEADER_INCLUDED
|
|
#define OPM_STANDARDWELL_HEADER_INCLUDED
|
|
|
|
|
|
#include <opm/autodiff/WellInterface.hpp>
|
|
#include <opm/autodiff/ISTLSolver.hpp>
|
|
#include <opm/autodiff/RateConverter.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template<typename TypeTag>
|
|
class StandardWell: public WellInterface<TypeTag>
|
|
{
|
|
|
|
public:
|
|
typedef WellInterface<TypeTag> Base;
|
|
// TODO: some functions working with AD variables handles only with values (double) without
|
|
// dealing with derivatives. It can be beneficial to make functions can work with either AD or scalar value.
|
|
// And also, it can also be beneficial to make these functions hanle different types of AD variables.
|
|
using typename Base::Simulator;
|
|
using typename Base::WellState;
|
|
using typename Base::IntensiveQuantities;
|
|
using typename Base::FluidSystem;
|
|
using typename Base::MaterialLaw;
|
|
using typename Base::ModelParameters;
|
|
using typename Base::Indices;
|
|
using typename Base::PolymerModule;
|
|
using typename Base::RateConverterType;
|
|
|
|
using Base::numEq;
|
|
|
|
using Base::has_solvent;
|
|
using Base::has_polymer;
|
|
using Base::has_energy;
|
|
|
|
// polymer concentration and temperature are already known by the well, so
|
|
// polymer and energy conservation do not need to be considered explicitly
|
|
static const int numPolymerEq = has_polymer ? 1 : 0;
|
|
static const int numEnergyEq = has_energy ? 1 : 0;
|
|
// number of the conservation equations
|
|
static const int numWellConservationEq = numEq - numPolymerEq - numEnergyEq;
|
|
// number of the well control equations
|
|
static const int numWellControlEq = 1;
|
|
static const int numWellEq = numWellConservationEq + numWellControlEq;
|
|
|
|
// the positions of the primary variables for StandardWell
|
|
// the first one is the weighted total rate (WQ_t), the second and the third ones are F_w and F_g,
|
|
// which represent the fraction of Water and Gas based on the weighted total rate, the last one is BHP.
|
|
// correspondingly, we have four well equations for blackoil model, the first three are mass
|
|
// converstation equations, and the last one is the well control equation.
|
|
// primary variables related to other components, will be before the Bhp and after F_g.
|
|
// well control equation is always the last well equation.
|
|
// TODO: in the current implementation, we use the well rate as the first primary variables for injectors,
|
|
// instead of G_t.
|
|
static const bool gasoil = numEq == 2 && (Indices::compositionSwitchIdx >= 0);
|
|
static const int WQTotal = 0;
|
|
static const int WFrac = gasoil? -1000: 1;
|
|
static const int GFrac = gasoil? 1: 2;
|
|
static const int SFrac = !has_solvent ? -1000 : 3;
|
|
// the index for Bhp in primary variables and also the index of well control equation
|
|
// they both will be the last one in their respective system.
|
|
// TODO: we should have indices for the well equations and well primary variables separately
|
|
static const int Bhp = numWellEq - numWellControlEq;
|
|
|
|
using typename Base::Scalar;
|
|
using typename Base::ConvergenceReport;
|
|
|
|
|
|
using Base::name;
|
|
using Base::Water;
|
|
using Base::Oil;
|
|
using Base::Gas;
|
|
|
|
using typename Base::Mat;
|
|
using typename Base::BVector;
|
|
using typename Base::Eval;
|
|
|
|
// sparsity pattern for the matrices
|
|
//[A C^T [x = [ res
|
|
// B D ] x_well] res_well]
|
|
|
|
// the vector type for the res_well and x_well
|
|
typedef Dune::FieldVector<Scalar, numWellEq> VectorBlockWellType;
|
|
typedef Dune::BlockVector<VectorBlockWellType> BVectorWell;
|
|
|
|
// the matrix type for the diagonal matrix D
|
|
typedef Dune::FieldMatrix<Scalar, numWellEq, numWellEq > DiagMatrixBlockWellType;
|
|
|
|
typedef Dune::BCRSMatrix <DiagMatrixBlockWellType> DiagMatWell;
|
|
|
|
// the matrix type for the non-diagonal matrix B and C^T
|
|
typedef Dune::FieldMatrix<Scalar, numWellEq, numEq> OffDiagMatrixBlockWellType;
|
|
typedef Dune::BCRSMatrix<OffDiagMatrixBlockWellType> OffDiagMatWell;
|
|
|
|
typedef DenseAd::Evaluation<double, /*size=*/numEq + numWellEq> EvalWell;
|
|
|
|
using Base::contiSolventEqIdx;
|
|
using Base::contiPolymerEqIdx;
|
|
static const int contiEnergyEqIdx = Indices::contiEnergyEqIdx;
|
|
|
|
StandardWell(const Well* well, const int time_step, const Wells* wells,
|
|
const ModelParameters& param,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components);
|
|
|
|
virtual void init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<double>& depth_arg,
|
|
const double gravity_arg,
|
|
const int num_cells);
|
|
|
|
|
|
virtual void initPrimaryVariablesEvaluation() const;
|
|
|
|
virtual void assembleWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells);
|
|
|
|
/// updating the well state based the control mode specified with current
|
|
// TODO: later will check wheter we need current
|
|
virtual void updateWellStateWithTarget(WellState& well_state) const;
|
|
|
|
/// check whether the well equations get converged for this well
|
|
virtual ConvergenceReport getWellConvergence(const std::vector<double>& B_avg) const;
|
|
|
|
/// Ax = Ax - C D^-1 B x
|
|
virtual void apply(const BVector& x, BVector& Ax) const;
|
|
/// r = r - C D^-1 Rw
|
|
virtual void apply(BVector& r) const;
|
|
|
|
/// using the solution x to recover the solution xw for wells and applying
|
|
/// xw to update Well State
|
|
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x,
|
|
WellState& well_state) const;
|
|
|
|
/// computing the well potentials for group control
|
|
virtual void computeWellPotentials(const Simulator& ebosSimulator,
|
|
const WellState& well_state,
|
|
std::vector<double>& well_potentials) /* const */;
|
|
|
|
virtual void updatePrimaryVariables(const WellState& well_state) const;
|
|
|
|
virtual void solveEqAndUpdateWellState(WellState& well_state);
|
|
|
|
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
|
|
const WellState& well_state); // should be const?
|
|
|
|
virtual void addWellContributions(Mat& mat) const;
|
|
|
|
/// \brief Wether the Jacobian will also have well contributions in it.
|
|
virtual bool jacobianContainsWellContributions() const
|
|
{
|
|
return param_.matrix_add_well_contributions_;
|
|
}
|
|
protected:
|
|
|
|
// protected functions from the Base class
|
|
using Base::getAllowCrossFlow;
|
|
using Base::phaseUsage;
|
|
using Base::flowPhaseToEbosCompIdx;
|
|
using Base::ebosCompIdxToFlowCompIdx;
|
|
using Base::wsolvent;
|
|
using Base::wpolymer;
|
|
using Base::wellHasTHPConstraints;
|
|
using Base::mostStrictBhpFromBhpLimits;
|
|
using Base::scalingFactor;
|
|
|
|
// protected member variables from the Base class
|
|
using Base::current_step_;
|
|
using Base::well_ecl_;
|
|
using Base::vfp_properties_;
|
|
using Base::gravity_;
|
|
using Base::param_;
|
|
using Base::well_efficiency_factor_;
|
|
using Base::first_perf_;
|
|
using Base::ref_depth_;
|
|
using Base::perf_depth_;
|
|
using Base::well_cells_;
|
|
using Base::number_of_perforations_;
|
|
using Base::number_of_phases_;
|
|
using Base::saturation_table_number_;
|
|
using Base::comp_frac_;
|
|
using Base::well_index_;
|
|
using Base::index_of_well_;
|
|
using Base::well_controls_;
|
|
using Base::well_type_;
|
|
using Base::num_components_;
|
|
|
|
using Base::perf_rep_radius_;
|
|
using Base::perf_length_;
|
|
using Base::bore_diameters_;
|
|
|
|
// densities of the fluid in each perforation
|
|
std::vector<double> perf_densities_;
|
|
// pressure drop between different perforations
|
|
std::vector<double> perf_pressure_diffs_;
|
|
|
|
// residuals of the well equations
|
|
BVectorWell resWell_;
|
|
|
|
// two off-diagonal matrices
|
|
OffDiagMatWell duneB_;
|
|
OffDiagMatWell duneC_;
|
|
// diagonal matrix for the well
|
|
DiagMatWell invDuneD_;
|
|
|
|
// several vector used in the matrix calculation
|
|
mutable BVectorWell Bx_;
|
|
mutable BVectorWell invDrw_;
|
|
|
|
// the values for the primary varibles
|
|
// based on different solutioin strategies, the wells can have different primary variables
|
|
mutable std::vector<double> primary_variables_;
|
|
|
|
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
|
|
mutable std::vector<EvalWell> primary_variables_evaluation_;
|
|
|
|
// the saturations in the well bore under surface conditions at the beginning of the time step
|
|
std::vector<double> F0_;
|
|
|
|
const EvalWell& getBhp() const;
|
|
|
|
EvalWell getQs(const int comp_idx) const;
|
|
|
|
const EvalWell& getWQTotal() const;
|
|
|
|
EvalWell wellVolumeFractionScaled(const int phase) const;
|
|
|
|
EvalWell wellVolumeFraction(const unsigned compIdx) const;
|
|
|
|
EvalWell wellSurfaceVolumeFraction(const int phase) const;
|
|
|
|
EvalWell extendEval(const Eval& in) const;
|
|
|
|
bool crossFlowAllowed(const Simulator& ebosSimulator) const;
|
|
|
|
// xw = inv(D)*(rw - C*x)
|
|
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
|
|
|
|
// updating the well_state based on well solution dwells
|
|
void updateWellState(const BVectorWell& dwells,
|
|
WellState& well_state) const;
|
|
|
|
// calculate the properties for the well connections
|
|
// to calulate the pressure difference between well connections.
|
|
void computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& well_state,
|
|
std::vector<double>& b_perf,
|
|
std::vector<double>& rsmax_perf,
|
|
std::vector<double>& rvmax_perf,
|
|
std::vector<double>& surf_dens_perf) const;
|
|
|
|
// TODO: not total sure whether it is a good idea to put this function here
|
|
// the major reason to put here is to avoid the usage of Wells struct
|
|
void computeConnectionDensities(const std::vector<double>& perfComponentRates,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf);
|
|
|
|
void computeConnectionPressureDelta();
|
|
|
|
void computeWellConnectionDensitesPressures(const WellState& well_state,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf);
|
|
|
|
// computing the accumulation term for later use in well mass equations
|
|
void computeAccumWell();
|
|
|
|
void computeWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& well_state);
|
|
|
|
// TODO: to check whether all the paramters are required
|
|
void computePerfRate(const IntensiveQuantities& intQuants,
|
|
const std::vector<EvalWell>& mob_perfcells_dense,
|
|
const double Tw, const EvalWell& bhp, const double& cdp,
|
|
const bool& allow_cf, std::vector<EvalWell>& cq_s,
|
|
double& perf_dis_gas_rate, double& perf_vap_oil_rate) const;
|
|
|
|
// TODO: maybe we should provide a light version of computePerfRate, which does not include the
|
|
// calculation of the derivatives
|
|
void computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
|
const EvalWell& bhp,
|
|
std::vector<double>& well_flux) const;
|
|
|
|
std::vector<double> computeWellPotentialWithTHP(const Simulator& ebosSimulator,
|
|
const double initial_bhp, // bhp from BHP constraints
|
|
const std::vector<double>& initial_potential) const;
|
|
|
|
template <class ValueType>
|
|
ValueType calculateBhpFromThp(const std::vector<ValueType>& rates, const int control_index) const;
|
|
|
|
double calculateThpFromBhp(const std::vector<double>& rates, const int control_index, const double bhp) const;
|
|
|
|
// get the mobility for specific perforation
|
|
void getMobility(const Simulator& ebosSimulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob) const;
|
|
|
|
void updateWaterMobilityWithPolymer(const Simulator& ebos_simulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob_water) const;
|
|
|
|
void updatePrimaryVariablesNewton(const BVectorWell& dwells,
|
|
const WellState& well_state) const;
|
|
|
|
void updateWellStateFromPrimaryVariables(WellState& well_state) const;
|
|
|
|
void updateThp(WellState& well_state) const;
|
|
|
|
void assembleControlEq();
|
|
|
|
// handle the non reasonable fractions due to numerical overshoot
|
|
void processFractions() const;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
#include "StandardWell_impl.hpp"
|
|
|
|
#endif // OPM_STANDARDWELL_HEADER_INCLUDED
|