mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 23:41:55 -06:00
301 lines
13 KiB
C++
301 lines
13 KiB
C++
/*
|
|
Copyright 2019 Equinor ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/material/common/Unused.hpp>
|
|
|
|
#include <opm/simulators/linalg/bda/BdaBridge.hpp>
|
|
#include <opm/simulators/linalg/bda/BdaResult.hpp>
|
|
|
|
#if HAVE_CUDA
|
|
#include <opm/simulators/linalg/bda/cusparseSolverBackend.hpp>
|
|
#endif
|
|
|
|
#if HAVE_OPENCL
|
|
#include <opm/simulators/linalg/bda/openclSolverBackend.hpp>
|
|
#endif
|
|
|
|
#if HAVE_FPGA
|
|
#include <opm/simulators/linalg/bda/FPGASolverBackend.hpp>
|
|
#endif
|
|
|
|
#if HAVE_AMGCL
|
|
#include <opm/simulators/linalg/bda/amgclSolverBackend.hpp>
|
|
#endif
|
|
|
|
typedef Dune::InverseOperatorResult InverseOperatorResult;
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
using Opm::Accelerator::BdaResult;
|
|
using Opm::Accelerator::BdaSolver;
|
|
using Opm::Accelerator::SolverStatus;
|
|
using Opm::Accelerator::ILUReorder;
|
|
|
|
template <class BridgeMatrix, class BridgeVector, int block_size>
|
|
BdaBridge<BridgeMatrix, BridgeVector, block_size>::BdaBridge(std::string accelerator_mode_,
|
|
[[maybe_unused]] std::string fpga_bitstream,
|
|
int linear_solver_verbosity, int maxit,
|
|
double tolerance,
|
|
[[maybe_unused]] unsigned int platformID,
|
|
unsigned int deviceID,
|
|
[[maybe_unused]] std::string opencl_ilu_reorder)
|
|
: verbosity(linear_solver_verbosity), accelerator_mode(accelerator_mode_)
|
|
{
|
|
if (accelerator_mode.compare("cusparse") == 0) {
|
|
#if HAVE_CUDA
|
|
use_gpu = true;
|
|
backend.reset(new Opm::Accelerator::cusparseSolverBackend<block_size>(linear_solver_verbosity, maxit, tolerance, deviceID));
|
|
#else
|
|
OPM_THROW(std::logic_error, "Error cusparseSolver was chosen, but CUDA was not found by CMake");
|
|
#endif
|
|
} else if (accelerator_mode.compare("opencl") == 0) {
|
|
#if HAVE_OPENCL
|
|
use_gpu = true;
|
|
ILUReorder ilu_reorder;
|
|
if (opencl_ilu_reorder == "") {
|
|
ilu_reorder = Opm::Accelerator::ILUReorder::GRAPH_COLORING; // default when not selected by user
|
|
} else if (opencl_ilu_reorder == "level_scheduling") {
|
|
ilu_reorder = Opm::Accelerator::ILUReorder::LEVEL_SCHEDULING;
|
|
} else if (opencl_ilu_reorder == "graph_coloring") {
|
|
ilu_reorder = Opm::Accelerator::ILUReorder::GRAPH_COLORING;
|
|
} else if (opencl_ilu_reorder == "none") {
|
|
ilu_reorder = Opm::Accelerator::ILUReorder::NONE;
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Error invalid argument for --opencl-ilu-reorder, usage: '--opencl-ilu-reorder=[level_scheduling|graph_coloring]'");
|
|
}
|
|
backend.reset(new Opm::Accelerator::openclSolverBackend<block_size>(linear_solver_verbosity, maxit, tolerance, platformID, deviceID, ilu_reorder));
|
|
#else
|
|
OPM_THROW(std::logic_error, "Error openclSolver was chosen, but OpenCL was not found by CMake");
|
|
#endif
|
|
} else if (accelerator_mode.compare("fpga") == 0) {
|
|
#if HAVE_FPGA
|
|
use_fpga = true;
|
|
ILUReorder ilu_reorder;
|
|
if (opencl_ilu_reorder == "") {
|
|
ilu_reorder = Opm::Accelerator::ILUReorder::LEVEL_SCHEDULING; // default when not selected by user
|
|
} else if (opencl_ilu_reorder == "level_scheduling") {
|
|
ilu_reorder = Opm::Accelerator::ILUReorder::LEVEL_SCHEDULING;
|
|
} else if (opencl_ilu_reorder == "graph_coloring") {
|
|
ilu_reorder = Opm::Accelerator::ILUReorder::GRAPH_COLORING;
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Error invalid argument for --opencl-ilu-reorder, usage: '--opencl-ilu-reorder=[level_scheduling|graph_coloring]'");
|
|
}
|
|
backend.reset(new Opm::Accelerator::FpgaSolverBackend<block_size>(fpga_bitstream, linear_solver_verbosity, maxit, tolerance, ilu_reorder));
|
|
#else
|
|
OPM_THROW(std::logic_error, "Error fpgaSolver was chosen, but FPGA was not enabled by CMake");
|
|
#endif
|
|
} else if (accelerator_mode.compare("amgcl") == 0) {
|
|
#if HAVE_AMGCL
|
|
use_gpu = true; // should be replaced by a 'use_bridge' boolean
|
|
backend.reset(new Opm::Accelerator::amgclSolverBackend<block_size>(linear_solver_verbosity, maxit, tolerance, platformID, deviceID));
|
|
#else
|
|
OPM_THROW(std::logic_error, "Error amgclSolver was chosen, but amgcl was not found by CMake");
|
|
#endif
|
|
} else if (accelerator_mode.compare("none") == 0) {
|
|
use_gpu = false;
|
|
use_fpga = false;
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Error unknown value for parameter 'AcceleratorMode', should be passed like '--accelerator-mode=[none|cusparse|opencl|fpga|amgcl]");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template <class BridgeMatrix>
|
|
int checkZeroDiagonal(BridgeMatrix& mat) {
|
|
static std::vector<typename BridgeMatrix::size_type> diag_indices; // contains offsets of the diagonal nnzs
|
|
int numZeros = 0;
|
|
const int dim = 3; // might be replaced with mat[0][0].N() or BridgeMatrix::block_type::size()
|
|
const double zero_replace = 1e-15;
|
|
if (diag_indices.empty()) {
|
|
int N = mat.N();
|
|
diag_indices.reserve(N);
|
|
for (typename BridgeMatrix::iterator r = mat.begin(); r != mat.end(); ++r) {
|
|
auto diag = r->find(r.index()); // diag is an iterator
|
|
assert(diag.index() == r.index());
|
|
for (int rr = 0; rr < dim; ++rr) {
|
|
auto& val = (*diag)[rr][rr]; // reference to easily change the value
|
|
if (val == 0.0) { // could be replaced by '< 1e-30' or similar
|
|
val = zero_replace;
|
|
++numZeros;
|
|
}
|
|
}
|
|
diag_indices.emplace_back(diag.offset());
|
|
}
|
|
}else{
|
|
for (typename BridgeMatrix::iterator r = mat.begin(); r != mat.end(); ++r) {
|
|
typename BridgeMatrix::size_type offset = diag_indices[r.index()];
|
|
auto& diag_block = r->getptr()[offset]; // diag_block is a reference to MatrixBlock, located on column r of row r
|
|
for (int rr = 0; rr < dim; ++rr) {
|
|
auto& val = diag_block[rr][rr];
|
|
if (val == 0.0) { // could be replaced by '< 1e-30' or similar
|
|
val = zero_replace;
|
|
++numZeros;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return numZeros;
|
|
}
|
|
|
|
|
|
// iterate sparsity pattern from Matrix and put colIndices and rowPointers in arrays
|
|
// sparsity pattern should stay the same
|
|
// this could be removed if Dune::BCRSMatrix features an API call that returns colIndices and rowPointers
|
|
template <class BridgeMatrix>
|
|
void getSparsityPattern(BridgeMatrix& mat, std::vector<int> &h_rows, std::vector<int> &h_cols) {
|
|
int sum_nnzs = 0;
|
|
|
|
// convert colIndices and rowPointers
|
|
if (h_rows.empty()) {
|
|
h_rows.emplace_back(0);
|
|
for (typename BridgeMatrix::const_iterator r = mat.begin(); r != mat.end(); ++r) {
|
|
int size_row = 0;
|
|
for (auto c = r->begin(); c != r->end(); ++c) {
|
|
h_cols.emplace_back(c.index());
|
|
size_row++;
|
|
}
|
|
sum_nnzs += size_row;
|
|
h_rows.emplace_back(sum_nnzs);
|
|
}
|
|
|
|
// h_rows and h_cols could be changed to 'unsigned int', but cusparse expects 'int'
|
|
if (static_cast<unsigned int>(h_rows[mat.N()]) != mat.nonzeroes()) {
|
|
OPM_THROW(std::logic_error, "Error size of rows do not sum to number of nonzeroes in BdaBridge::getSparsityPattern()");
|
|
}
|
|
}
|
|
} // end getSparsityPattern()
|
|
|
|
|
|
template <class BridgeMatrix, class BridgeVector, int block_size>
|
|
void BdaBridge<BridgeMatrix, BridgeVector, block_size>::solve_system([[maybe_unused]] BridgeMatrix* mat,
|
|
[[maybe_unused]] BridgeVector& b,
|
|
[[maybe_unused]] WellContributions& wellContribs,
|
|
[[maybe_unused]] InverseOperatorResult& res)
|
|
{
|
|
|
|
if (use_gpu || use_fpga) {
|
|
BdaResult result;
|
|
result.converged = false;
|
|
static std::vector<int> h_rows;
|
|
static std::vector<int> h_cols;
|
|
const int dim = (*mat)[0][0].N();
|
|
const int Nb = mat->N();
|
|
const int N = Nb * dim;
|
|
const int nnzb = (h_rows.empty()) ? mat->nonzeroes() : h_rows.back();
|
|
const int nnz = nnzb * dim * dim;
|
|
|
|
if (dim != 3) {
|
|
OpmLog::warning("BdaSolver only accepts blocksize = 3 at this time, will use Dune for the remainder of the program");
|
|
use_gpu = use_fpga = false;
|
|
return;
|
|
}
|
|
|
|
if (h_rows.capacity() == 0) {
|
|
h_rows.reserve(Nb+1);
|
|
h_cols.reserve(nnzb);
|
|
getSparsityPattern(*mat, h_rows, h_cols);
|
|
}
|
|
|
|
Dune::Timer t_zeros;
|
|
int numZeros = checkZeroDiagonal(*mat);
|
|
if (verbosity >= 2) {
|
|
std::ostringstream out;
|
|
out << "Checking zeros took: " << t_zeros.stop() << " s, found " << numZeros << " zeros";
|
|
OpmLog::info(out.str());
|
|
}
|
|
|
|
|
|
/////////////////////////
|
|
// actually solve
|
|
|
|
// assume that underlying data (nonzeroes) from mat (Dune::BCRSMatrix) are contiguous, if this is not the case, the chosen BdaSolver is expected to perform undefined behaviour
|
|
SolverStatus status = backend->solve_system(N, nnz, dim, static_cast<double*>(&(((*mat)[0][0][0][0]))), h_rows.data(), h_cols.data(), static_cast<double*>(&(b[0][0])), wellContribs, result);
|
|
switch(status) {
|
|
case SolverStatus::BDA_SOLVER_SUCCESS:
|
|
//OpmLog::info("BdaSolver converged");
|
|
break;
|
|
case SolverStatus::BDA_SOLVER_ANALYSIS_FAILED:
|
|
OpmLog::warning("BdaSolver could not analyse level information of matrix, perhaps there is still a 0.0 on the diagonal of a block on the diagonal");
|
|
break;
|
|
case SolverStatus::BDA_SOLVER_CREATE_PRECONDITIONER_FAILED:
|
|
OpmLog::warning("BdaSolver could not create preconditioner, perhaps there is still a 0.0 on the diagonal of a block on the diagonal");
|
|
break;
|
|
default:
|
|
OpmLog::warning("BdaSolver returned unknown status code");
|
|
}
|
|
|
|
res.iterations = result.iterations;
|
|
res.reduction = result.reduction;
|
|
res.converged = result.converged;
|
|
res.conv_rate = result.conv_rate;
|
|
res.elapsed = result.elapsed;
|
|
} else {
|
|
res.converged = false;
|
|
}
|
|
}
|
|
|
|
|
|
template <class BridgeMatrix, class BridgeVector, int block_size>
|
|
void BdaBridge<BridgeMatrix, BridgeVector, block_size>::get_result([[maybe_unused]] BridgeVector& x) {
|
|
if (use_gpu || use_fpga) {
|
|
backend->get_result(static_cast<double*>(&(x[0][0])));
|
|
}
|
|
}
|
|
|
|
template <class BridgeMatrix, class BridgeVector, int block_size>
|
|
void BdaBridge<BridgeMatrix, BridgeVector, block_size>::initWellContributions([[maybe_unused]] WellContributions& wellContribs) {
|
|
if(accelerator_mode.compare("opencl") == 0){
|
|
#if HAVE_OPENCL
|
|
const auto openclBackend = static_cast<const Opm::Accelerator::openclSolverBackend<block_size>*>(backend.get());
|
|
wellContribs.setOpenCLEnv(openclBackend->context.get(), openclBackend->queue.get());
|
|
#else
|
|
OPM_THROW(std::logic_error, "Error openclSolver was chosen, but OpenCL was not found by CMake");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// the tests use Dune::FieldMatrix, Flow uses Opm::MatrixBlock
|
|
#define INSTANTIATE_BDA_FUNCTIONS(n) \
|
|
template class BdaBridge<Dune::BCRSMatrix<Opm::MatrixBlock<double, n, n>, std::allocator<Opm::MatrixBlock<double, n, n> > >, \
|
|
Dune::BlockVector<Dune::FieldVector<double, n>, std::allocator<Dune::FieldVector<double, n> > >, \
|
|
n>; \
|
|
\
|
|
template class BdaBridge<Dune::BCRSMatrix<Dune::FieldMatrix<double, n, n>, std::allocator<Dune::FieldMatrix<double, n, n> > >, \
|
|
Dune::BlockVector<Dune::FieldVector<double, n>, std::allocator<Dune::FieldVector<double, n> > >, \
|
|
n>;
|
|
|
|
|
|
INSTANTIATE_BDA_FUNCTIONS(1);
|
|
INSTANTIATE_BDA_FUNCTIONS(2);
|
|
INSTANTIATE_BDA_FUNCTIONS(3);
|
|
INSTANTIATE_BDA_FUNCTIONS(4);
|
|
INSTANTIATE_BDA_FUNCTIONS(5);
|
|
INSTANTIATE_BDA_FUNCTIONS(6);
|
|
|
|
#undef INSTANTIATE_BDA_FUNCTIONS
|
|
|
|
} // namespace Opm
|