mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-22 09:16:27 -06:00
584 lines
19 KiB
C++
584 lines
19 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::ObstacleProblem
|
|
*/
|
|
#ifndef EWOMS_OBSTACLE_PROBLEM_HH
|
|
#define EWOMS_OBSTACLE_PROBLEM_HH
|
|
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/version.hh>
|
|
|
|
#include <dune/grid/yaspgrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
|
|
|
|
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
|
|
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
|
|
#include <opm/material/thermal/ConstantSolidHeatCapLaw.hpp>
|
|
#include <opm/material/thermal/SomertonThermalConductionLaw.hpp>
|
|
|
|
#include <opm/models/common/multiphasebaseparameters.hh>
|
|
|
|
#include <opm/models/ncp/ncpproperties.hh>
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class ObstacleProblem;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
struct ObstacleBaseProblem {};
|
|
}
|
|
|
|
// Set the grid type
|
|
template<class TypeTag>
|
|
struct Grid<TypeTag, TTag::ObstacleBaseProblem> { using type = Dune::YaspGrid<2>; };
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::ObstacleBaseProblem> { using type = Opm::ObstacleProblem<TypeTag>; };
|
|
|
|
// Set fluid configuration
|
|
template<class TypeTag>
|
|
struct FluidSystem<TypeTag, TTag::ObstacleBaseProblem>
|
|
{ using type = Opm::H2ON2FluidSystem<GetPropType<TypeTag, Properties::Scalar>>; };
|
|
|
|
// Set the material Law
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::ObstacleBaseProblem>
|
|
{
|
|
private:
|
|
// define the material law
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialTraits = Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx>;
|
|
|
|
using EffMaterialLaw = Opm::LinearMaterial<MaterialTraits>;
|
|
|
|
public:
|
|
using type = Opm::EffToAbsLaw<EffMaterialLaw>;
|
|
};
|
|
|
|
// Set the thermal conduction law
|
|
template<class TypeTag>
|
|
struct ThermalConductionLaw<TypeTag, TTag::ObstacleBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
using type = Opm::SomertonThermalConductionLaw<FluidSystem, Scalar>;
|
|
};
|
|
|
|
// set the energy storage law for the solid phase
|
|
template<class TypeTag>
|
|
struct SolidEnergyLaw<TypeTag, TTag::ObstacleBaseProblem>
|
|
{ using type = Opm::ConstantSolidHeatCapLaw<GetPropType<TypeTag, Properties::Scalar>>; };
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Problem where liquid water is first stopped by a
|
|
* low-permeability lens and then seeps though it.
|
|
*
|
|
* Liquid water is injected by using of a free-flow condition on the
|
|
* lower right of the domain. This water level then raises until
|
|
* hydrostatic pressure is reached. On the left of the domain, a
|
|
* rectangular obstacle with \f$10^3\f$ lower permeability than the
|
|
* rest of the domain first stops the for a while until it seeps
|
|
* through it.
|
|
*
|
|
* The domain is sized 60m times 40m and consists of two media, a
|
|
* moderately permeable soil (\f$ K_0=10e-12 m^2\f$) and an obstacle
|
|
* at \f$[10; 20]m \times [0; 35]m \f$ with a lower permeablility of
|
|
* \f$ K_1=K_0/1000\f$.
|
|
*
|
|
* Initially the whole domain is filled by nitrogen, the temperature
|
|
* is \f$20^\circ C\f$ for the whole domain. The gas pressure is
|
|
* initially 1 bar, at the inlet of the liquid water on the right side
|
|
* it is 2 bar.
|
|
*
|
|
* The boundary is no-flow except on the lower 10 meters of the left
|
|
* and the right boundary where a free flow condition is assumed.
|
|
*/
|
|
template <class TypeTag>
|
|
class ObstacleProblem : public GetPropType<TypeTag, Properties::BaseProblem>
|
|
{
|
|
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
|
|
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
|
|
using ThermalConductionLawParams = GetPropType<TypeTag, Properties::ThermalConductionLawParams>;
|
|
using SolidEnergyLawParams = GetPropType<TypeTag, Properties::SolidEnergyLawParams>;
|
|
|
|
enum {
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld,
|
|
numPhases = getPropValue<TypeTag, Properties::NumPhases>(),
|
|
gasPhaseIdx = FluidSystem::gasPhaseIdx,
|
|
liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
|
|
H2OIdx = FluidSystem::H2OIdx,
|
|
N2Idx = FluidSystem::N2Idx
|
|
};
|
|
|
|
using GlobalPosition = Dune::FieldVector<typename GridView::ctype, dimWorld>;
|
|
using PhaseVector = Dune::FieldVector<Scalar, numPhases>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
ObstacleProblem(Simulator& simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 1e-6;
|
|
temperature_ = 273.15 + 25; // -> 25°C
|
|
|
|
// initialize the tables of the fluid system
|
|
Scalar Tmin = temperature_ - 1.0;
|
|
Scalar Tmax = temperature_ + 1.0;
|
|
unsigned nT = 3;
|
|
|
|
Scalar pmin = 1.0e5 * 0.75;
|
|
Scalar pmax = 2.0e5 * 1.25;
|
|
unsigned np = 1000;
|
|
|
|
FluidSystem::init(Tmin, Tmax, nT, pmin, pmax, np);
|
|
|
|
// intrinsic permeabilities
|
|
coarseK_ = this->toDimMatrix_(1e-12);
|
|
fineK_ = this->toDimMatrix_(1e-15);
|
|
|
|
// the porosity
|
|
finePorosity_ = 0.3;
|
|
coarsePorosity_ = 0.3;
|
|
|
|
// residual saturations
|
|
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.0);
|
|
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
|
|
|
|
// parameters for the linear law, i.e. minimum and maximum
|
|
// pressures
|
|
fineMaterialParams_.setPcMinSat(liquidPhaseIdx, 0.0);
|
|
fineMaterialParams_.setPcMaxSat(liquidPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setPcMinSat(liquidPhaseIdx, 0.0);
|
|
coarseMaterialParams_.setPcMaxSat(liquidPhaseIdx, 0.0);
|
|
|
|
/*
|
|
// entry pressures for Brooks-Corey
|
|
fineMaterialParams_.setEntryPressure(5e3);
|
|
coarseMaterialParams_.setEntryPressure(1e3);
|
|
|
|
// Brooks-Corey shape parameters
|
|
fineMaterialParams_.setLambda(2);
|
|
coarseMaterialParams_.setLambda(2);
|
|
*/
|
|
|
|
fineMaterialParams_.finalize();
|
|
coarseMaterialParams_.finalize();
|
|
|
|
// parameters for the somerton law of thermal conduction
|
|
computeThermalCondParams_(fineThermalCondParams_, finePorosity_);
|
|
computeThermalCondParams_(coarseThermalCondParams_, coarsePorosity_);
|
|
|
|
// assume constant volumetric heat capacity and granite
|
|
solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
|
|
* 2700.0); // density of granite [kg/m^3]
|
|
solidEnergyLawParams_.finalize();
|
|
|
|
initFluidStates_();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::registerParameters
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
ParentType::registerParameters();
|
|
|
|
Parameters::SetDefault<Parameters::GridFile>("./data/obstacle_24x16.dgf");
|
|
Parameters::SetDefault<Parameters::EndTime<Scalar>>(1e4);
|
|
Parameters::SetDefault<Parameters::InitialTimeStepSize<Scalar>>(250);
|
|
Parameters::SetDefault<Parameters::EnableGravity>(true);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::endTimeStep
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms of the individual phases
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
PrimaryVariables phaseStorage;
|
|
this->model().globalPhaseStorage(phaseStorage, phaseIdx);
|
|
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage in " << FluidSystem::phaseName(phaseIdx)
|
|
<< "Phase: [" << phaseStorage << "]"
|
|
<< "\n" << std::flush;
|
|
}
|
|
}
|
|
|
|
// Calculate total storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage total: [" << storage << "]"
|
|
<< "\n" << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "obstacle"
|
|
<< "_" << Model::name();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*
|
|
* This problem simply assumes a constant temperature.
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return temperature_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix&
|
|
intrinsicPermeability(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
if (isFineMaterial_(context.pos(spaceIdx, timeIdx)))
|
|
return fineK_;
|
|
return coarseK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return finePorosity_;
|
|
else
|
|
return coarsePorosity_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams&
|
|
materialLawParams(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineMaterialParams_;
|
|
else
|
|
return coarseMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the parameters for the energy storage law of the rock
|
|
*
|
|
* In this case, we assume the rock-matrix to be granite.
|
|
*/
|
|
template <class Context>
|
|
const SolidEnergyLawParams&
|
|
solidEnergyLawParams(const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ return solidEnergyLawParams_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
|
|
*/
|
|
template <class Context>
|
|
const ThermalConductionLawParams &
|
|
thermalConductionParams(const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
|
|
if (isFineMaterial_(pos))
|
|
return fineThermalCondParams_;
|
|
return coarseThermalCondParams_;
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const auto& pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onInlet_(pos))
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, inletFluidState_);
|
|
else if (onOutlet_(pos))
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, outletFluidState_);
|
|
else
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables& values,
|
|
const Context& context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
|
|
values.assignMassConservative(outletFluidState_, matParams);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector& rate,
|
|
const Context& /*context*/,
|
|
unsigned /*spaceIdx*/,
|
|
unsigned /*timeIdx*/) const
|
|
{ rate = 0.0; }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
/*!
|
|
* \brief Returns whether a given global position is in the
|
|
* fine-permeability region or not.
|
|
*/
|
|
bool isFineMaterial_(const GlobalPosition& pos) const
|
|
{ return 10 <= pos[0] && pos[0] <= 20 && 0 <= pos[1] && pos[1] <= 35; }
|
|
|
|
bool onInlet_(const GlobalPosition& globalPos) const
|
|
{
|
|
Scalar x = globalPos[0];
|
|
Scalar y = globalPos[1];
|
|
return x >= 60 - eps_ && y <= 10;
|
|
}
|
|
|
|
bool onOutlet_(const GlobalPosition& globalPos) const
|
|
{
|
|
Scalar x = globalPos[0];
|
|
Scalar y = globalPos[1];
|
|
return x < eps_ && y <= 10;
|
|
}
|
|
|
|
void initFluidStates_()
|
|
{
|
|
initFluidState_(inletFluidState_, coarseMaterialParams_,
|
|
/*isInlet=*/true);
|
|
initFluidState_(outletFluidState_, coarseMaterialParams_,
|
|
/*isInlet=*/false);
|
|
}
|
|
|
|
template <class FluidState>
|
|
void initFluidState_(FluidState& fs, const MaterialLawParams& matParams, bool isInlet)
|
|
{
|
|
unsigned refPhaseIdx;
|
|
unsigned otherPhaseIdx;
|
|
|
|
// set the fluid temperatures
|
|
fs.setTemperature(temperature_);
|
|
|
|
if (isInlet) {
|
|
// only liquid on inlet
|
|
refPhaseIdx = liquidPhaseIdx;
|
|
otherPhaseIdx = gasPhaseIdx;
|
|
|
|
// set liquid saturation
|
|
fs.setSaturation(liquidPhaseIdx, 1.0);
|
|
|
|
// set pressure of the liquid phase
|
|
fs.setPressure(liquidPhaseIdx, 2e5);
|
|
|
|
// set the liquid composition to pure water
|
|
fs.setMoleFraction(liquidPhaseIdx, N2Idx, 0.0);
|
|
fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
|
|
}
|
|
else {
|
|
// elsewhere, only gas
|
|
refPhaseIdx = gasPhaseIdx;
|
|
otherPhaseIdx = liquidPhaseIdx;
|
|
|
|
// set gas saturation
|
|
fs.setSaturation(gasPhaseIdx, 1.0);
|
|
|
|
// set pressure of the gas phase
|
|
fs.setPressure(gasPhaseIdx, 1e5);
|
|
|
|
// set the gas composition to 99% nitrogen and 1% steam
|
|
fs.setMoleFraction(gasPhaseIdx, N2Idx, 0.99);
|
|
fs.setMoleFraction(gasPhaseIdx, H2OIdx, 0.01);
|
|
}
|
|
|
|
// set the other saturation
|
|
fs.setSaturation(otherPhaseIdx, 1.0 - fs.saturation(refPhaseIdx));
|
|
|
|
// calulate the capillary pressure
|
|
PhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, matParams, fs);
|
|
fs.setPressure(otherPhaseIdx, fs.pressure(refPhaseIdx)
|
|
+ (pC[otherPhaseIdx] - pC[refPhaseIdx]));
|
|
|
|
// make the fluid state consistent with local thermodynamic
|
|
// equilibrium
|
|
using ComputeFromReferencePhase = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
|
|
|
|
typename FluidSystem::template ParameterCache<Scalar> paramCache;
|
|
ComputeFromReferencePhase::solve(fs, paramCache, refPhaseIdx,
|
|
/*setViscosity=*/true,
|
|
/*setEnthalpy=*/false);
|
|
}
|
|
|
|
void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
|
|
{
|
|
Scalar lambdaWater = 0.6;
|
|
Scalar lambdaGranite = 2.8;
|
|
|
|
Scalar lambdaWet = std::pow(lambdaGranite, (1 - poro))
|
|
* std::pow(lambdaWater, poro);
|
|
Scalar lambdaDry = std::pow(lambdaGranite, (1 - poro));
|
|
|
|
params.setFullySaturatedLambda(gasPhaseIdx, lambdaDry);
|
|
params.setFullySaturatedLambda(liquidPhaseIdx, lambdaWet);
|
|
params.setVacuumLambda(lambdaDry);
|
|
}
|
|
|
|
DimMatrix coarseK_;
|
|
DimMatrix fineK_;
|
|
|
|
Scalar coarsePorosity_;
|
|
Scalar finePorosity_;
|
|
|
|
MaterialLawParams fineMaterialParams_;
|
|
MaterialLawParams coarseMaterialParams_;
|
|
|
|
ThermalConductionLawParams fineThermalCondParams_;
|
|
ThermalConductionLawParams coarseThermalCondParams_;
|
|
SolidEnergyLawParams solidEnergyLawParams_;
|
|
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> inletFluidState_;
|
|
Opm::CompositionalFluidState<Scalar, FluidSystem> outletFluidState_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|