opm-simulators/opm/simulators/wells/BlackoilWellModel.hpp
2020-08-28 10:44:53 +02:00

446 lines
18 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <cassert>
#include <tuple>
#include <opm/parser/eclipse/EclipseState/Runspec.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellTestState.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GuideRate.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/Group.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Group/GConSale.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/VFPInjProperties.hpp>
#include <opm/simulators/wells/VFPProdProperties.hpp>
#include <opm/simulators/flow/countGlobalCells.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/WellInterface.hpp>
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/simulators/wells/MultisegmentWell.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <opm/simulators/timestepping/gatherConvergenceReport.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
namespace Opm::Properties {
template<class TypeTag, class MyTypeTag>
struct EnableTerminalOutput {
using type = UndefinedProperty;
};
} // namespace Opm::Properties
namespace Opm {
/// Class for handling the blackoil well model.
template<typename TypeTag>
class BlackoilWellModel : public Opm::BaseAuxiliaryModule<TypeTag>
{
public:
// --------- Types ---------
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
typedef typename Opm::BaseAuxiliaryModule<TypeTag>::NeighborSet NeighborSet;
static const int numEq = Indices::numEq;
static const int solventSaturationIdx = Indices::solventSaturationIdx;
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
typedef Opm::BlackOilPolymerModule<TypeTag> PolymerModule;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
BlackoilWellModel(Simulator& ebosSimulator);
void init();
/////////////
// <eWoms auxiliary module stuff>
/////////////
unsigned numDofs() const
// No extra dofs are inserted for wells. (we use a Schur complement.)
{ return 0; }
void addNeighbors(std::vector<NeighborSet>& neighbors) const;
void applyInitial()
{}
void linearize(SparseMatrixAdapter& jacobian, GlobalEqVector& res);
void postSolve(GlobalEqVector& deltaX)
{
recoverWellSolutionAndUpdateWellState(deltaX);
}
/////////////
// </ eWoms auxiliary module stuff>
/////////////
template <class Restarter>
void deserialize(Restarter& /* res */)
{
// TODO (?)
}
/*!
* \brief This method writes the complete state of the well
* to the harddisk.
*/
template <class Restarter>
void serialize(Restarter& /* res*/)
{
// TODO (?)
}
void beginEpisode()
{
beginReportStep(ebosSimulator_.episodeIndex());
}
void beginTimeStep();
void beginIteration()
{
assemble(ebosSimulator_.model().newtonMethod().numIterations(),
ebosSimulator_.timeStepSize());
}
void endIteration()
{ }
void endTimeStep()
{
timeStepSucceeded(ebosSimulator_.time(), ebosSimulator_.timeStepSize());
}
void endEpisode()
{
endReportStep();
}
template <class Context>
void computeTotalRatesForDof(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const;
using WellInterfacePtr = std::shared_ptr<WellInterface<TypeTag> >;
WellInterfacePtr well(const std::string& wellName) const;
void initFromRestartFile(const RestartValue& restartValues);
Opm::data::GroupValues
groupData(const int reportStepIdx, const Opm::Schedule& sched) const
{
auto gvalues = ::Opm::data::GroupValues{};
for (const auto& gname : sched.groupNames(reportStepIdx)) {
const auto& grup = sched.getGroup(gname, reportStepIdx);
auto& gdata = gvalues[gname];
this->assignGroupControl(grup, gdata);
}
return gvalues;
}
Opm::data::Wells wellData() const
{
auto wsrpt = well_state_.report(phase_usage_, Opm::UgGridHelpers::globalCell(grid()));
for (const auto& well : this->wells_ecl_) {
auto xwPos = wsrpt.find(well.name());
if (xwPos == wsrpt.end()) { // No well results. Unexpected.
continue;
}
xwPos->second.current_control.isProducer = well.isProducer();
}
return wsrpt;
}
// substract Binv(D)rw from r;
void apply( BVector& r) const;
// subtract B*inv(D)*C * x from A*x
void apply(const BVector& x, BVector& Ax) const;
#if HAVE_CUDA || HAVE_OPENCL
// accumulate the contributions of all Wells in the WellContributions object
void getWellContributions(WellContributions& x) const;
#endif
// apply well model with scaling of alpha
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
// Check if well equations is converged.
ConvergenceReport getWellConvergence(const std::vector<Scalar>& B_avg, const bool checkGroupConvergence = false) const;
// return the internal well state, ignore the passed one.
// Used by the legacy code to make it compatible with the legacy well models.
const WellState& wellState(const WellState& well_state OPM_UNUSED) const;
// return the internal well state
const WellState& wellState() const;
const SimulatorReportSingle& lastReport() const;
void addWellContributions(SparseMatrixAdapter& jacobian) const
{
for ( const auto& well: well_container_ ) {
well->addWellContributions(jacobian);
}
}
// called at the beginning of a report step
void beginReportStep(const int time_step);
/// Return true if any well has a THP constraint.
bool hasTHPConstraints() const;
/// Shut down any single well, but only if it is in prediction mode.
/// Returns true if the well was actually found and shut.
bool forceShutWellByNameIfPredictionMode(const std::string& wellname, const double simulation_time);
protected:
Simulator& ebosSimulator_;
std::vector< Well > wells_ecl_;
std::vector< std::vector<PerforationData> > well_perf_data_;
bool wells_active_;
// a vector of all the wells.
std::vector<WellInterfacePtr > well_container_;
// map from logically cartesian cell indices to compressed ones
std::vector<int> cartesian_to_compressed_;
std::vector<bool> is_cell_perforated_;
void initializeWellPerfData();
// create the well container
std::vector<WellInterfacePtr > createWellContainer(const int time_step);
WellInterfacePtr createWellForWellTest(const std::string& well_name, const int report_step, Opm::DeferredLogger& deferred_logger) const;
WellState well_state_;
WellState previous_well_state_;
WellState well_state_nupcol_;
const ModelParameters param_;
bool terminal_output_;
bool has_solvent_;
bool has_polymer_;
std::vector<int> pvt_region_idx_;
PhaseUsage phase_usage_;
size_t global_nc_;
// the number of the cells in the local grid
size_t number_of_cells_;
double gravity_;
std::vector<double> depth_;
bool initial_step_;
bool report_step_starts_;
std::unique_ptr<RateConverterType> rateConverter_;
std::unique_ptr<VFPProperties<VFPInjProperties,VFPProdProperties>> vfp_properties_;
SimulatorReportSingle last_report_;
WellTestState wellTestState_;
std::unique_ptr<GuideRate> guideRate_;
// used to better efficiency of calcuation
mutable BVector scaleAddRes_;
const Grid& grid() const
{ return ebosSimulator_.vanguard().grid(); }
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
const Schedule& schedule() const
{ return ebosSimulator_.vanguard().schedule(); }
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
void assemble(const int iterationIdx,
const double dt);
// called at the end of a time step
void timeStepSucceeded(const double& simulationTime, const double dt);
// called at the end of a report step
void endReportStep();
// using the solution x to recover the solution xw for wells and applying
// xw to update Well State
void recoverWellSolutionAndUpdateWellState(const BVector& x);
void updateWellControls(Opm::DeferredLogger& deferred_logger, const bool checkGroupControls);
void updateAndCommunicateGroupData();
// setting the well_solutions_ based on well_state.
void updatePrimaryVariables(Opm::DeferredLogger& deferred_logger);
void setupCartesianToCompressed_(const int* global_cell, int number_of_cells);
void computeRepRadiusPerfLength(const Grid& grid, Opm::DeferredLogger& deferred_logger);
void computeAverageFormationFactor(std::vector<Scalar>& B_avg) const;
// Calculating well potentials for each well
void computeWellPotentials(std::vector<double>& well_potentials, const int reportStepIdx, Opm::DeferredLogger& deferred_logger);
const std::vector<double>& wellPerfEfficiencyFactors() const;
void calculateEfficiencyFactors(const int reportStepIdx);
// it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation()
// makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions
// twice at the beginning of the time step
/// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated
/// at the beginning of the time step and no derivatives are included in these quantities
void calculateExplicitQuantities(Opm::DeferredLogger& deferred_logger) const;
SimulatorReportSingle solveWellEq(const std::vector<Scalar>& B_avg, const double dt, Opm::DeferredLogger& deferred_logger);
void initPrimaryVariablesEvaluation() const;
// The number of components in the model.
int numComponents() const;
int numLocalWells() const;
int numPhases() const;
void assembleWellEq(const std::vector<Scalar>& B_avg, const double dt, Opm::DeferredLogger& deferred_logger);
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
void prepareTimeStep(Opm::DeferredLogger& deferred_logger);
void extractLegacyCellPvtRegionIndex_();
void extractLegacyDepth_();
/// return true if wells are available in the reservoir
bool wellsActive() const;
void setWellsActive(const bool wells_active);
/// return true if wells are available on this process
bool localWellsActive() const;
/// upate the wellTestState related to economic limits
void updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const;
void updatePerforationIntensiveQuantities();
void wellTesting(const int timeStepIdx, const double simulationTime, Opm::DeferredLogger& deferred_logger);
// convert well data from opm-common to well state from opm-core
void wellsToState( const data::Wells& wells,
const PhaseUsage& phases,
const bool handle_ms_well,
WellStateFullyImplicitBlackoil& state ) const;
// whether there exists any multisegment well open on this process
bool anyMSWellOpenLocal() const;
const Well& getWellEcl(const std::string& well_name) const;
void updateGroupIndividualControls(Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups);
void updateGroupIndividualControl(const Group& group, Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups);
bool checkGroupConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const;
Group::ProductionCMode checkGroupProductionConstraints(const Group& group, Opm::DeferredLogger& deferred_logger) const;
Group::InjectionCMode checkGroupInjectionConstraints(const Group& group, const Phase& phase) const;
void checkGconsaleLimits(const Group& group, WellState& well_state, Opm::DeferredLogger& deferred_logger ) const;
void updateGroupHigherControls(Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups);
void checkGroupHigherConstraints(const Group& group, Opm::DeferredLogger& deferred_logger, std::set<std::string>& switched_groups);
void actionOnBrokenConstraints(const Group& group, const Group::ExceedAction& exceed_action, const Group::ProductionCMode& newControl, Opm::DeferredLogger& deferred_logger);
void actionOnBrokenConstraints(const Group& group, const Group::InjectionCMode& newControl, const Phase& topUpPhase, Opm::DeferredLogger& deferred_logger);
WellInterfacePtr getWell(const std::string& well_name) const;
void updateWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, const WellStateFullyImplicitBlackoil& wellState);
void setWsolvent(const Group& group, const Schedule& schedule, const int reportStepIdx, double wsolvent);
void assignGroupControl(const Group& group, data::GroupData& gdata) const;
};
} // namespace Opm
#include "BlackoilWellModel_impl.hpp"
#endif