opm-simulators/opm/simulators/flow/BlackoilModelEbos.hpp

1151 lines
51 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2014, 2015 Statoil ASA.
Copyright 2015 NTNU
Copyright 2015, 2016, 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <opm/models/utils/start.hh>
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>
#include <opm/grid/UnstructuredGrid.h>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/simulators/aquifers/BlackoilAquiferModel.hpp>
#include <opm/simulators/flow/countGlobalCells.hpp>
#include <opm/simulators/flow/NonlinearSolverEbos.hpp>
#include <opm/simulators/flow/BlackoilModelParametersEbos.hpp>
#include <opm/simulators/linalg/ISTLSolverEbos.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeSteppingEbos.hpp>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/simulators/timestepping/SimulatorTimer.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/BlackoilWellModel.hpp>
#include <opm/simulators/wells/WellConnectionAuxiliaryModule.hpp>
#include <dune/istl/owneroverlapcopy.hh>
#include <dune/common/parallel/communication.hh>
#include <dune/common/timer.hh>
#include <dune/common/unused.hh>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <limits>
#include <utility>
#include <vector>
namespace Opm::Properties {
namespace TTag {
struct EclFlowProblem {
using InheritsFrom = std::tuple<FlowTimeSteppingParameters, FlowModelParameters,
FlowNonLinearSolver, EclBaseProblem, BlackOilModel>;
};
}
template<class TypeTag>
struct OutputDir<TypeTag, TTag::EclFlowProblem> {
static constexpr auto value = "";
};
template<class TypeTag>
struct EnableDebuggingChecks<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
// default in flow is to formulate the equations in surface volumes
template<class TypeTag>
struct BlackoilConserveSurfaceVolume<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = true;
};
template<class TypeTag>
struct UseVolumetricResidual<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EclAquiferModel<TypeTag, TTag::EclFlowProblem> {
using type = BlackoilAquiferModel<TypeTag>;
};
// disable all extensions supported by black oil model. this should not really be
// necessary but it makes things a bit more explicit
template<class TypeTag>
struct EnablePolymer<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableSolvent<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableTemperature<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = true;
};
template<class TypeTag>
struct EnableEnergy<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableFoam<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableBrine<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableSaltPrecipitation<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EnableMICP<TypeTag, TTag::EclFlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct EclWellModel<TypeTag, TTag::EclFlowProblem> {
using type = BlackoilWellModel<TypeTag>;
};
template<class TypeTag>
struct LinearSolverSplice<TypeTag, TTag::EclFlowProblem> {
using type = TTag::FlowIstlSolver;
};
} // namespace Opm::Properties
namespace Opm {
/// A model implementation for three-phase black oil.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil and vice versa. It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
template <class TypeTag>
class BlackoilModelEbos
{
public:
// --------- Types and enums ---------
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
typedef double Scalar;
static const int numEq = Indices::numEq;
static const int contiSolventEqIdx = Indices::contiSolventEqIdx;
static const int contiZfracEqIdx = Indices::contiZfracEqIdx;
static const int contiPolymerEqIdx = Indices::contiPolymerEqIdx;
static const int contiEnergyEqIdx = Indices::contiEnergyEqIdx;
static const int contiPolymerMWEqIdx = Indices::contiPolymerMWEqIdx;
static const int contiFoamEqIdx = Indices::contiFoamEqIdx;
static const int contiBrineEqIdx = Indices::contiBrineEqIdx;
static const int contiMicrobialEqIdx = Indices::contiMicrobialEqIdx;
static const int contiOxygenEqIdx = Indices::contiOxygenEqIdx;
static const int contiUreaEqIdx = Indices::contiUreaEqIdx;
static const int contiBiofilmEqIdx = Indices::contiBiofilmEqIdx;
static const int contiCalciteEqIdx = Indices::contiCalciteEqIdx;
static const int solventSaturationIdx = Indices::solventSaturationIdx;
static const int zFractionIdx = Indices::zFractionIdx;
static const int polymerConcentrationIdx = Indices::polymerConcentrationIdx;
static const int polymerMoleWeightIdx = Indices::polymerMoleWeightIdx;
static const int temperatureIdx = Indices::temperatureIdx;
static const int foamConcentrationIdx = Indices::foamConcentrationIdx;
static const int saltConcentrationIdx = Indices::saltConcentrationIdx;
static const int microbialConcentrationIdx = Indices::microbialConcentrationIdx;
static const int oxygenConcentrationIdx = Indices::oxygenConcentrationIdx;
static const int ureaConcentrationIdx = Indices::ureaConcentrationIdx;
static const int biofilmConcentrationIdx = Indices::biofilmConcentrationIdx;
static const int calciteConcentrationIdx = Indices::calciteConcentrationIdx;
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef typename SparseMatrixAdapter::MatrixBlock MatrixBlockType;
typedef typename SparseMatrixAdapter::IstlMatrix Mat;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef ISTLSolverEbos<TypeTag> ISTLSolverType;
class ComponentName
{
public:
ComponentName()
: names_(numEq)
{
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned canonicalCompIdx = FluidSystem::solventComponentIndex(phaseIdx);
names_[Indices::canonicalToActiveComponentIndex(canonicalCompIdx)]
= FluidSystem::componentName(canonicalCompIdx);
}
if constexpr (has_solvent_) {
names_[solventSaturationIdx] = "Solvent";
}
if constexpr (has_extbo_) {
names_[zFractionIdx] = "ZFraction";
}
if constexpr (has_polymer_) {
names_[polymerConcentrationIdx] = "Polymer";
}
if constexpr (has_polymermw_) {
assert(has_polymer_);
names_[polymerMoleWeightIdx] = "MolecularWeightP";
}
if constexpr (has_energy_) {
names_[temperatureIdx] = "Energy";
}
if constexpr (has_foam_) {
names_[foamConcentrationIdx] = "Foam";
}
if constexpr (has_brine_) {
names_[saltConcentrationIdx] = "Brine";
}
if constexpr (has_micp_) {
names_[microbialConcentrationIdx] = "Microbes";
names_[oxygenConcentrationIdx] = "Oxygen";
names_[ureaConcentrationIdx] = "Urea";
names_[biofilmConcentrationIdx] = "Biofilm";
names_[calciteConcentrationIdx] = "Calcite";
}
}
const std::string& name(const int compIdx) const
{
return this->names_[compIdx];
}
private:
std::vector<std::string> names_{};
};
//typedef typename SolutionVector :: value_type PrimaryVariables ;
// --------- Public methods ---------
/// Construct the model. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] param parameters
/// \param[in] grid grid data structure
/// \param[in] wells well structure
/// \param[in] vfp_properties Vertical flow performance tables
/// \param[in] linsolver linear solver
/// \param[in] eclState eclipse state
/// \param[in] terminal_output request output to cout/cerr
BlackoilModelEbos(Simulator& ebosSimulator,
const ModelParameters& param,
BlackoilWellModel<TypeTag>& well_model,
const bool terminal_output)
: ebosSimulator_(ebosSimulator)
, grid_(ebosSimulator_.vanguard().grid())
, phaseUsage_(phaseUsageFromDeck(eclState()))
, param_( param )
, well_model_ (well_model)
, terminal_output_ (terminal_output)
, current_relaxation_(1.0)
, dx_old_(ebosSimulator_.model().numGridDof())
{
// compute global sum of number of cells
global_nc_ = detail::countGlobalCells(grid_);
convergence_reports_.reserve(300); // Often insufficient, but avoids frequent moves.
}
bool isParallel() const
{ return grid_.comm().size() > 1; }
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
/// Called once before each time step.
/// \param[in] timer simulation timer
SimulatorReportSingle prepareStep(const SimulatorTimerInterface& timer)
{
SimulatorReportSingle report;
Dune::Timer perfTimer;
perfTimer.start();
// update the solution variables in ebos
if ( timer.lastStepFailed() ) {
ebosSimulator_.model().updateFailed();
} else {
ebosSimulator_.model().advanceTimeLevel();
}
// Set the timestep size, episode index, and non-linear iteration index
// for ebos explicitly. ebos needs to know the report step/episode index
// because of timing dependent data despite the fact that flow uses its
// own time stepper. (The length of the episode does not matter, though.)
ebosSimulator_.setTime(timer.simulationTimeElapsed());
ebosSimulator_.setTimeStepSize(timer.currentStepLength());
ebosSimulator_.model().newtonMethod().setIterationIndex(0);
ebosSimulator_.problem().beginTimeStep();
unsigned numDof = ebosSimulator_.model().numGridDof();
wasSwitched_.resize(numDof);
std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);
if (param_.update_equations_scaling_) {
std::cout << "equation scaling not supported yet" << std::endl;
//updateEquationsScaling();
}
report.pre_post_time += perfTimer.stop();
return report;
}
/// Called once per nonlinear iteration.
/// This model will perform a Newton-Raphson update, changing reservoir_state
/// and well_state. It will also use the nonlinear_solver to do relaxation of
/// updates if necessary.
/// \param[in] iteration should be 0 for the first call of a new timestep
/// \param[in] timer simulation timer
/// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control)
/// \param[in, out] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
template <class NonlinearSolverType>
SimulatorReportSingle nonlinearIteration(const int iteration,
const SimulatorTimerInterface& timer,
NonlinearSolverType& nonlinear_solver)
{
SimulatorReportSingle report;
failureReport_ = SimulatorReportSingle();
Dune::Timer perfTimer;
perfTimer.start();
if (iteration == 0) {
// For each iteration we store in a vector the norms of the residual of
// the mass balance for each active phase, the well flux and the well equations.
residual_norms_history_.clear();
current_relaxation_ = 1.0;
dx_old_ = 0.0;
convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}});
convergence_reports_.back().report.reserve(11);
}
report.total_linearizations = 1;
try {
report += assembleReservoir(timer, iteration);
report.assemble_time += perfTimer.stop();
}
catch (...) {
report.assemble_time += perfTimer.stop();
failureReport_ += report;
// todo (?): make the report an attribute of the class
throw; // continue throwing the stick
}
std::vector<double> residual_norms;
perfTimer.reset();
perfTimer.start();
// the step is not considered converged until at least minIter iterations is done
{
auto convrep = getConvergence(timer, iteration,residual_norms);
report.converged = convrep.converged() && iteration > nonlinear_solver.minIter();;
ConvergenceReport::Severity severity = convrep.severityOfWorstFailure();
convergence_reports_.back().report.push_back(std::move(convrep));
// Throw if any NaN or too large residual found.
if (severity == ConvergenceReport::Severity::NotANumber) {
OPM_THROW(NumericalProblem, "NaN residual found!");
} else if (severity == ConvergenceReport::Severity::TooLarge) {
OPM_THROW_NOLOG(NumericalProblem, "Too large residual found!");
}
}
report.update_time += perfTimer.stop();
residual_norms_history_.push_back(residual_norms);
if (!report.converged) {
perfTimer.reset();
perfTimer.start();
report.total_newton_iterations = 1;
// enable single precision for solvers when dt is smaller then 20 days
//residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;
// Compute the nonlinear update.
unsigned nc = ebosSimulator_.model().numGridDof();
BVector x(nc);
// Solve the linear system.
linear_solve_setup_time_ = 0.0;
try {
// apply the Schur compliment of the well model to the reservoir linearized
// equations
// Note that linearize may throw for MSwells.
wellModel().linearize(ebosSimulator().model().linearizer().jacobian(),
ebosSimulator().model().linearizer().residual());
solveJacobianSystem(x);
report.linear_solve_setup_time += linear_solve_setup_time_;
report.linear_solve_time += perfTimer.stop();
report.total_linear_iterations += linearIterationsLastSolve();
}
catch (...) {
report.linear_solve_setup_time += linear_solve_setup_time_;
report.linear_solve_time += perfTimer.stop();
report.total_linear_iterations += linearIterationsLastSolve();
failureReport_ += report;
throw; // re-throw up
}
perfTimer.reset();
perfTimer.start();
// handling well state update before oscillation treatment is a decision based
// on observation to avoid some big performance degeneration under some circumstances.
// there is no theorectical explanation which way is better for sure.
wellModel().postSolve(x);
if (param_.use_update_stabilization_) {
// Stabilize the nonlinear update.
bool isOscillate = false;
bool isStagnate = false;
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
if (isOscillate) {
current_relaxation_ -= nonlinear_solver.relaxIncrement();
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
if (terminalOutputEnabled()) {
std::string msg = " Oscillating behavior detected: Relaxation set to "
+ std::to_string(current_relaxation_);
OpmLog::info(msg);
}
}
nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
}
// Apply the update, with considering model-dependent limitations and
// chopping of the update.
updateSolution(x);
report.update_time += perfTimer.stop();
}
return report;
}
void printIf(int c, double x, double y, double eps, std::string type) {
if (std::abs(x-y) > eps) {
std::cout << type << " " <<c << ": "<<x << " " << y << std::endl;
}
}
/// Called once after each time step.
/// In this class, this function does nothing.
/// \param[in] timer simulation timer
SimulatorReportSingle afterStep(const SimulatorTimerInterface&)
{
SimulatorReportSingle report;
Dune::Timer perfTimer;
perfTimer.start();
ebosSimulator_.problem().endTimeStep();
report.pre_post_time += perfTimer.stop();
return report;
}
/// Assemble the residual and Jacobian of the nonlinear system.
/// \param[in] reservoir_state reservoir state variables
/// \param[in, out] well_state well state variables
/// \param[in] initial_assembly pass true if this is the first call to assemble() in this timestep
SimulatorReportSingle assembleReservoir(const SimulatorTimerInterface& /* timer */,
const int iterationIdx)
{
// -------- Mass balance equations --------
ebosSimulator_.model().newtonMethod().setIterationIndex(iterationIdx);
ebosSimulator_.problem().beginIteration();
ebosSimulator_.model().linearizer().linearizeDomain();
ebosSimulator_.problem().endIteration();
return wellModel().lastReport();
}
// compute the "relative" change of the solution between time steps
double relativeChange() const
{
Scalar resultDelta = 0.0;
Scalar resultDenom = 0.0;
const auto& elemMapper = ebosSimulator_.model().elementMapper();
const auto& gridView = ebosSimulator_.gridView();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
unsigned globalElemIdx = elemMapper.index(elem);
const auto& priVarsNew = ebosSimulator_.model().solution(/*timeIdx=*/0)[globalElemIdx];
Scalar pressureNew;
pressureNew = priVarsNew[Indices::pressureSwitchIdx];
Scalar saturationsNew[FluidSystem::numPhases] = { 0.0 };
Scalar oilSaturationNew = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) &&
FluidSystem::numActivePhases() > 1 &&
priVarsNew.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw) {
saturationsNew[FluidSystem::waterPhaseIdx] = priVarsNew[Indices::waterSwitchIdx];
oilSaturationNew -= saturationsNew[FluidSystem::waterPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) &&
FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
priVarsNew.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg) {
assert(Indices::compositionSwitchIdx >= 0 );
saturationsNew[FluidSystem::gasPhaseIdx] = priVarsNew[Indices::compositionSwitchIdx];
oilSaturationNew -= saturationsNew[FluidSystem::gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
saturationsNew[FluidSystem::oilPhaseIdx] = oilSaturationNew;
}
const auto& priVarsOld = ebosSimulator_.model().solution(/*timeIdx=*/1)[globalElemIdx];
Scalar pressureOld;
pressureOld = priVarsOld[Indices::pressureSwitchIdx];
Scalar saturationsOld[FluidSystem::numPhases] = { 0.0 };
Scalar oilSaturationOld = 1.0;
// NB fix me! adding pressures changes to satutation changes does not make sense
Scalar tmp = pressureNew - pressureOld;
resultDelta += tmp*tmp;
resultDenom += pressureNew*pressureNew;
if (FluidSystem::numActivePhases() > 1) {
if (priVarsOld.primaryVarsMeaningWater() == PrimaryVariables::WaterMeaning::Sw) {
saturationsOld[FluidSystem::waterPhaseIdx] = priVarsOld[Indices::waterSwitchIdx];
oilSaturationOld -= saturationsOld[FluidSystem::waterPhaseIdx];
}
if (priVarsOld.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Sg)
{
assert(Indices::compositionSwitchIdx >= 0 );
saturationsOld[FluidSystem::gasPhaseIdx] = priVarsOld[Indices::compositionSwitchIdx];
oilSaturationOld -= saturationsOld[FluidSystem::gasPhaseIdx];
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
saturationsOld[FluidSystem::oilPhaseIdx] = oilSaturationOld;
}
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++ phaseIdx) {
Scalar tmpSat = saturationsNew[phaseIdx] - saturationsOld[phaseIdx];
resultDelta += tmpSat*tmpSat;
resultDenom += saturationsNew[phaseIdx]*saturationsNew[phaseIdx];
assert(std::isfinite(resultDelta));
assert(std::isfinite(resultDenom));
}
}
}
resultDelta = gridView.comm().sum(resultDelta);
resultDenom = gridView.comm().sum(resultDenom);
if (resultDenom > 0.0)
return resultDelta/resultDenom;
return 0.0;
}
/// Number of linear iterations used in last call to solveJacobianSystem().
int linearIterationsLastSolve() const
{
return ebosSimulator_.model().newtonMethod().linearSolver().iterations ();
}
/// Solve the Jacobian system Jx = r where J is the Jacobian and
/// r is the residual.
void solveJacobianSystem(BVector& x)
{
auto& ebosJac = ebosSimulator_.model().linearizer().jacobian();
auto& ebosResid = ebosSimulator_.model().linearizer().residual();
// set initial guess
x = 0.0;
auto& ebosSolver = ebosSimulator_.model().newtonMethod().linearSolver();
Dune::Timer perfTimer;
perfTimer.start();
ebosSolver.prepare(ebosJac, ebosResid);
linear_solve_setup_time_ = perfTimer.stop();
ebosSolver.setResidual(ebosResid);
// actually, the error needs to be calculated after setResidual in order to
// account for parallelization properly. since the residual of ECFV
// discretizations does not need to be synchronized across processes to be
// consistent, this is not relevant for OPM-flow...
ebosSolver.setMatrix(ebosJac);
ebosSolver.solve(x);
}
/// Apply an update to the primary variables.
void updateSolution(const BVector& dx)
{
OPM_TIMEBLOCK(updateSolution);
auto& ebosNewtonMethod = ebosSimulator_.model().newtonMethod();
SolutionVector& solution = ebosSimulator_.model().solution(/*timeIdx=*/0);
ebosNewtonMethod.update_(/*nextSolution=*/solution,
/*curSolution=*/solution,
/*update=*/dx,
/*resid=*/dx); // the update routines of the black
// oil model do not care about the
// residual
// if the solution is updated, the intensive quantities need to be recalculated
{
OPM_TIMEBLOCK(invalidateAndUpdateIntensiveQuantities);
ebosSimulator_.model().invalidateAndUpdateIntensiveQuantities(/*timeIdx=*/0);
ebosSimulator_.problem().eclWriter()->mutableEclOutputModule().invalidateLocalData();
}
}
/// Return true if output to cout is wanted.
bool terminalOutputEnabled() const
{
return terminal_output_;
}
template <class CollectiveCommunication>
std::tuple<double,double> convergenceReduction(const CollectiveCommunication& comm,
const double pvSumLocal,
const double numAquiferPvSumLocal,
std::vector< Scalar >& R_sum,
std::vector< Scalar >& maxCoeff,
std::vector< Scalar >& B_avg)
{
OPM_TIMEBLOCK(convergenceReduction);
// Compute total pore volume (use only owned entries)
double pvSum = pvSumLocal;
double numAquiferPvSum = numAquiferPvSumLocal;
if( comm.size() > 1 )
{
// global reduction
std::vector< Scalar > sumBuffer;
std::vector< Scalar > maxBuffer;
const int numComp = B_avg.size();
sumBuffer.reserve( 2*numComp + 2 ); // +2 for (numAquifer)pvSum
maxBuffer.reserve( numComp );
for( int compIdx = 0; compIdx < numComp; ++compIdx )
{
sumBuffer.push_back( B_avg[ compIdx ] );
sumBuffer.push_back( R_sum[ compIdx ] );
maxBuffer.push_back( maxCoeff[ compIdx ] );
}
// Compute total pore volume
sumBuffer.push_back( pvSum );
sumBuffer.push_back( numAquiferPvSum );
// compute global sum
comm.sum( sumBuffer.data(), sumBuffer.size() );
// compute global max
comm.max( maxBuffer.data(), maxBuffer.size() );
// restore values to local variables
for( int compIdx = 0, buffIdx = 0; compIdx < numComp; ++compIdx, ++buffIdx )
{
B_avg[ compIdx ] = sumBuffer[ buffIdx ];
++buffIdx;
R_sum[ compIdx ] = sumBuffer[ buffIdx ];
}
for( int compIdx = 0; compIdx < numComp; ++compIdx )
{
maxCoeff[ compIdx ] = maxBuffer[ compIdx ];
}
// restore global pore volume
pvSum = sumBuffer[sumBuffer.size()-2];
numAquiferPvSum = sumBuffer.back();
}
// return global pore volume
return {pvSum, numAquiferPvSum};
}
/// \brief Get reservoir quantities on this process needed for convergence calculations.
/// \return A pair of the local pore volume of interior cells and the pore volumes
/// of the cells associated with a numerical aquifer.
std::tuple<double,double> localConvergenceData(std::vector<Scalar>& R_sum,
std::vector<Scalar>& maxCoeff,
std::vector<Scalar>& B_avg)
{
OPM_TIMEBLOCK(localConvergenceData);
double pvSumLocal = 0.0;
double numAquiferPvSumLocal = 0.0;
const auto& ebosModel = ebosSimulator_.model();
const auto& ebosProblem = ebosSimulator_.problem();
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator().gridView();
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interior)) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) * ebosModel.dofTotalVolume( cell_idx );
pvSumLocal += pvValue;
if (isNumericalAquiferCell(gridView.grid(), elem))
{
numAquiferPvSumLocal += pvValue;
}
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx)
{
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
B_avg[ compIdx ] += 1.0 / fs.invB(phaseIdx).value();
const auto R2 = ebosResid[cell_idx][compIdx];
R_sum[ compIdx ] += R2;
maxCoeff[ compIdx ] = std::max( maxCoeff[ compIdx ], std::abs( R2 ) / pvValue );
}
if constexpr (has_solvent_) {
B_avg[ contiSolventEqIdx ] += 1.0 / intQuants.solventInverseFormationVolumeFactor().value();
const auto R2 = ebosResid[cell_idx][contiSolventEqIdx];
R_sum[ contiSolventEqIdx ] += R2;
maxCoeff[ contiSolventEqIdx ] = std::max( maxCoeff[ contiSolventEqIdx ], std::abs( R2 ) / pvValue );
}
if constexpr (has_extbo_) {
B_avg[ contiZfracEqIdx ] += 1.0 / fs.invB(FluidSystem::gasPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiZfracEqIdx];
R_sum[ contiZfracEqIdx ] += R2;
maxCoeff[ contiZfracEqIdx ] = std::max( maxCoeff[ contiZfracEqIdx ], std::abs( R2 ) / pvValue );
}
if constexpr (has_polymer_) {
B_avg[ contiPolymerEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiPolymerEqIdx];
R_sum[ contiPolymerEqIdx ] += R2;
maxCoeff[ contiPolymerEqIdx ] = std::max( maxCoeff[ contiPolymerEqIdx ], std::abs( R2 ) / pvValue );
}
if constexpr (has_foam_) {
B_avg[ contiFoamEqIdx ] += 1.0 / fs.invB(FluidSystem::gasPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiFoamEqIdx];
R_sum[ contiFoamEqIdx ] += R2;
maxCoeff[ contiFoamEqIdx ] = std::max( maxCoeff[ contiFoamEqIdx ], std::abs( R2 ) / pvValue );
}
if constexpr (has_brine_) {
B_avg[ contiBrineEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiBrineEqIdx];
R_sum[ contiBrineEqIdx ] += R2;
maxCoeff[ contiBrineEqIdx ] = std::max( maxCoeff[ contiBrineEqIdx ], std::abs( R2 ) / pvValue );
}
if constexpr (has_polymermw_) {
static_assert(has_polymer_);
B_avg[contiPolymerMWEqIdx] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
// the residual of the polymer molecular equation is scaled down by a 100, since molecular weight
// can be much bigger than 1, and this equation shares the same tolerance with other mass balance equations
// TODO: there should be a more general way to determine the scaling-down coefficient
const auto R2 = ebosResid[cell_idx][contiPolymerMWEqIdx] / 100.;
R_sum[contiPolymerMWEqIdx] += R2;
maxCoeff[contiPolymerMWEqIdx] = std::max( maxCoeff[contiPolymerMWEqIdx], std::abs( R2 ) / pvValue );
}
if constexpr (has_energy_) {
B_avg[ contiEnergyEqIdx ] += 1.0 / (4.182e1); // converting J -> RM3 (entalpy / (cp * deltaK * rho) assuming change of 1e-5K of water
const auto R2 = ebosResid[cell_idx][contiEnergyEqIdx];
R_sum[ contiEnergyEqIdx ] += R2;
maxCoeff[ contiEnergyEqIdx ] = std::max( maxCoeff[ contiEnergyEqIdx ], std::abs( R2 ) / pvValue );
}
if constexpr (has_micp_) {
B_avg[ contiMicrobialEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R1 = ebosResid[cell_idx][contiMicrobialEqIdx];
R_sum[ contiMicrobialEqIdx ] += R1;
maxCoeff[ contiMicrobialEqIdx ] = std::max( maxCoeff[ contiMicrobialEqIdx ], std::abs( R1 ) / pvValue );
B_avg[ contiOxygenEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R2 = ebosResid[cell_idx][contiOxygenEqIdx];
R_sum[ contiOxygenEqIdx ] += R2;
maxCoeff[ contiOxygenEqIdx ] = std::max( maxCoeff[ contiOxygenEqIdx ], std::abs( R2 ) / pvValue );
B_avg[ contiUreaEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R3 = ebosResid[cell_idx][contiUreaEqIdx];
R_sum[ contiUreaEqIdx ] += R3;
maxCoeff[ contiUreaEqIdx ] = std::max( maxCoeff[ contiUreaEqIdx ], std::abs( R3 ) / pvValue );
B_avg[ contiBiofilmEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R4 = ebosResid[cell_idx][contiBiofilmEqIdx];
R_sum[ contiBiofilmEqIdx ] += R4;
maxCoeff[ contiBiofilmEqIdx ] = std::max( maxCoeff[ contiBiofilmEqIdx ], std::abs( R4 ) / pvValue );
B_avg[ contiCalciteEqIdx ] += 1.0 / fs.invB(FluidSystem::waterPhaseIdx).value();
const auto R5 = ebosResid[cell_idx][contiCalciteEqIdx];
R_sum[ contiCalciteEqIdx ] += R5;
maxCoeff[ contiCalciteEqIdx ] = std::max( maxCoeff[ contiCalciteEqIdx ], std::abs( R5 ) / pvValue );
}
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilModelEbos::localConvergenceData() failed: ", grid_.comm());
// compute local average in terms of global number of elements
const int bSize = B_avg.size();
for ( int i = 0; i<bSize; ++i )
{
B_avg[ i ] /= Scalar( global_nc_ );
}
return {pvSumLocal, numAquiferPvSumLocal};
}
/// \brief Compute the total pore volume of cells violating CNV that are not part
/// of a numerical aquifer.
double computeCnvErrorPv(const std::vector<Scalar>& B_avg, double dt)
{
OPM_TIMEBLOCK(computeCnvErrorPv);
double errorPV{};
const auto& ebosModel = ebosSimulator_.model();
const auto& ebosProblem = ebosSimulator_.problem();
const auto& ebosResid = ebosSimulator_.model().linearizer().residual();
const auto& gridView = ebosSimulator().gridView();
ElementContext elemCtx(ebosSimulator_);
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView, Dune::Partitions::interiorBorder))
{
// Skip cells of numerical Aquifer
if (isNumericalAquiferCell(gridView.grid(), elem))
{
continue;
}
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cell_idx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const double pvValue = ebosProblem.referencePorosity(cell_idx, /*timeIdx=*/0) * ebosModel.dofTotalVolume( cell_idx );
const auto& cellResidual = ebosResid[cell_idx];
bool cnvViolated = false;
for (unsigned eqIdx = 0; eqIdx < cellResidual.size(); ++eqIdx)
{
using std::abs;
Scalar CNV = cellResidual[eqIdx] * dt * B_avg[eqIdx] / pvValue;
cnvViolated = cnvViolated || (abs(CNV) > param_.tolerance_cnv_);
}
if (cnvViolated)
{
errorPV += pvValue;
}
}
OPM_END_PARALLEL_TRY_CATCH("BlackoilModelEbos::ComputeCnvError() failed: ", grid_.comm());
return grid_.comm().sum(errorPV);
}
ConvergenceReport getReservoirConvergence(const double reportTime,
const double dt,
const int iteration,
std::vector<Scalar>& B_avg,
std::vector<Scalar>& residual_norms)
{
OPM_TIMEBLOCK(getReservoirConvergence);
typedef std::vector< Scalar > Vector;
const int numComp = numEq;
Vector R_sum(numComp, 0.0 );
Vector maxCoeff(numComp, std::numeric_limits< Scalar >::lowest() );
const auto [ pvSumLocal, numAquiferPvSumLocal] = localConvergenceData(R_sum, maxCoeff, B_avg);
// compute global sum and max of quantities
const auto [ pvSum, numAquiferPvSum ] =
convergenceReduction(grid_.comm(), pvSumLocal,
numAquiferPvSumLocal,
R_sum, maxCoeff, B_avg);
auto cnvErrorPvFraction = computeCnvErrorPv(B_avg, dt);
cnvErrorPvFraction /= (pvSum - numAquiferPvSum);
const double tol_mb = param_.tolerance_mb_;
// Default value of relaxed_max_pv_fraction_ is 0.03 and min_strict_cnv_iter_ is 0.
// For each iteration, we need to determine whether to use the relaxed CNV tolerance.
// To disable the usage of relaxed CNV tolerance, you can set the relaxed_max_pv_fraction_ to be 0.
const bool use_relaxed = cnvErrorPvFraction < param_.relaxed_max_pv_fraction_ && iteration >= param_.min_strict_cnv_iter_;
const double tol_cnv = use_relaxed ? param_.tolerance_cnv_relaxed_ : param_.tolerance_cnv_;
// Finish computation
std::vector<Scalar> CNV(numComp);
std::vector<Scalar> mass_balance_residual(numComp);
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
CNV[compIdx] = B_avg[compIdx] * dt * maxCoeff[compIdx];
mass_balance_residual[compIdx] = std::abs(B_avg[compIdx]*R_sum[compIdx]) * dt / pvSum;
residual_norms.push_back(CNV[compIdx]);
}
// Create convergence report.
ConvergenceReport report{reportTime};
using CR = ConvergenceReport;
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
double res[2] = { mass_balance_residual[compIdx], CNV[compIdx] };
CR::ReservoirFailure::Type types[2] = { CR::ReservoirFailure::Type::MassBalance,
CR::ReservoirFailure::Type::Cnv };
double tol[2] = { tol_mb, tol_cnv };
for (int ii : {0, 1}) {
if (std::isnan(res[ii])) {
report.setReservoirFailed({types[ii], CR::Severity::NotANumber, compIdx});
if ( terminal_output_ ) {
OpmLog::debug("NaN residual for " + this->compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] > maxResidualAllowed()) {
report.setReservoirFailed({types[ii], CR::Severity::TooLarge, compIdx});
if ( terminal_output_ ) {
OpmLog::debug("Too large residual for " + this->compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] < 0.0) {
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
if ( terminal_output_ ) {
OpmLog::debug("Negative residual for " + this->compNames_.name(compIdx) + " equation.");
}
} else if (res[ii] > tol[ii]) {
report.setReservoirFailed({types[ii], CR::Severity::Normal, compIdx});
}
report.setReservoirConvergenceMetric(types[ii], compIdx, res[ii]);
}
}
// Output of residuals.
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::string msg = "Iter";
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
msg += " MB(";
msg += this->compNames_.name(compIdx)[0];
msg += ") ";
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
msg += " CNV(";
msg += this->compNames_.name(compIdx)[0];
msg += ") ";
}
OpmLog::debug(msg);
}
std::ostringstream ss;
const std::streamsize oprec = ss.precision(3);
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
ss << std::setw(4) << iteration;
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << mass_balance_residual[compIdx];
}
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
ss << std::setw(11) << CNV[compIdx];
}
ss.precision(oprec);
ss.flags(oflags);
OpmLog::debug(ss.str());
}
return report;
}
/// Compute convergence based on total mass balance (tol_mb) and maximum
/// residual mass balance (tol_cnv).
/// \param[in] timer simulation timer
/// \param[in] iteration current iteration number
/// \param[out] residual_norms CNV residuals by phase
ConvergenceReport getConvergence(const SimulatorTimerInterface& timer,
const int iteration,
std::vector<double>& residual_norms)
{
OPM_TIMEBLOCK(getConvergence);
// Get convergence reports for reservoir and wells.
std::vector<Scalar> B_avg(numEq, 0.0);
auto report = getReservoirConvergence(timer.simulationTimeElapsed(),
timer.currentStepLength(),
iteration, B_avg, residual_norms);
{
OPM_TIMEBLOCK(getWellConvergence);
report += wellModel().getWellConvergence(B_avg, /*checkWellGroupControls*/report.converged());
}
return report;
}
/// The number of active fluid phases in the model.
int numPhases() const
{
return phaseUsage_.num_phases;
}
/// Wrapper required due to not following generic API
template<class T>
std::vector<std::vector<double> >
computeFluidInPlace(const T&, const std::vector<int>& fipnum) const
{
return computeFluidInPlace(fipnum);
}
/// Should not be called
std::vector<std::vector<double> >
computeFluidInPlace(const std::vector<int>& /*fipnum*/) const
{
OPM_TIMEBLOCK(computeFluidInPlace);
//assert(true)
//return an empty vector
std::vector<std::vector<double> > regionValues(0, std::vector<double>(0,0.0));
return regionValues;
}
const Simulator& ebosSimulator() const
{ return ebosSimulator_; }
Simulator& ebosSimulator()
{ return ebosSimulator_; }
/// return the statistics if the nonlinearIteration() method failed
const SimulatorReportSingle& failureReport() const
{ return failureReport_; }
const std::vector<StepReport>& stepReports() const
{
return convergence_reports_;
}
protected:
// --------- Data members ---------
Simulator& ebosSimulator_;
const Grid& grid_;
const PhaseUsage phaseUsage_;
static constexpr bool has_solvent_ = getPropValue<TypeTag, Properties::EnableSolvent>();
static constexpr bool has_extbo_ = getPropValue<TypeTag, Properties::EnableExtbo>();
static constexpr bool has_polymer_ = getPropValue<TypeTag, Properties::EnablePolymer>();
static constexpr bool has_polymermw_ = getPropValue<TypeTag, Properties::EnablePolymerMW>();
static constexpr bool has_energy_ = getPropValue<TypeTag, Properties::EnableEnergy>();
static constexpr bool has_foam_ = getPropValue<TypeTag, Properties::EnableFoam>();
static constexpr bool has_brine_ = getPropValue<TypeTag, Properties::EnableBrine>();
static constexpr bool has_micp_ = getPropValue<TypeTag, Properties::EnableMICP>();
ModelParameters param_;
SimulatorReportSingle failureReport_;
// Well Model
BlackoilWellModel<TypeTag>& well_model_;
/// \brief Whether we print something to std::cout
bool terminal_output_;
/// \brief The number of cells of the global grid.
long int global_nc_;
std::vector<std::vector<double>> residual_norms_history_;
double current_relaxation_;
BVector dx_old_;
std::vector<StepReport> convergence_reports_;
ComponentName compNames_{};
public:
/// return the StandardWells object
BlackoilWellModel<TypeTag>&
wellModel() { return well_model_; }
const BlackoilWellModel<TypeTag>&
wellModel() const { return well_model_; }
void beginReportStep()
{
ebosSimulator_.problem().beginEpisode();
}
void endReportStep()
{
ebosSimulator_.problem().endEpisode();
}
private:
template<class T>
bool isNumericalAquiferCell(const Dune::CpGrid& grid, const T& elem)
{
const auto& aquiferCells = grid.sortedNumAquiferCells();
if (aquiferCells.empty())
{
return false;
}
auto candidate = std::lower_bound(aquiferCells.begin(), aquiferCells.end(),
elem.index());
return candidate != aquiferCells.end() && *candidate == elem.index();
}
template<class G, class T>
typename std::enable_if<!std::is_same<G,Dune::CpGrid>::value, bool>::type
isNumericalAquiferCell(const G&, const T&)
{
return false;
}
double dpMaxRel() const { return param_.dp_max_rel_; }
double dsMax() const { return param_.ds_max_; }
double drMaxRel() const { return param_.dr_max_rel_; }
double maxResidualAllowed() const { return param_.max_residual_allowed_; }
double linear_solve_setup_time_;
public:
std::vector<bool> wasSwitched_;
};
} // namespace Opm
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED