opm-simulators/opm/simulators/wells/WellState.hpp
2020-03-16 10:39:56 +01:00

372 lines
15 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATE_HEADER_INCLUDED
#define OPM_WELLSTATE_HEADER_INCLUDED
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/output/data/Wells.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <array>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include <cassert>
#include <cstddef>
namespace Opm
{
/// The state of a set of wells.
class WellState
{
public:
typedef std::array< int, 3 > mapentry_t;
typedef std::map< std::string, mapentry_t > WellMapType;
/// Allocate and initialize if wells is non-null.
/// Also tries to give useful initial values to the bhp() and
/// wellRates() fields, depending on controls. The
/// perfRates() field is filled with zero, and perfPress()
/// with -1e100.
void init(const std::vector<double>& cellPressures,
const std::vector<Well>& wells_ecl,
const PhaseUsage& pu,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
// clear old name mapping
wellMap_.clear();
well_perf_data_ = well_perf_data;
{
// const int nw = wells->number_of_wells;
const int nw = wells_ecl.size();
// const int np = wells->number_of_phases;
const int np = pu.num_phases;
np_ = np;
open_for_output_.assign(nw, true);
bhp_.resize(nw, 0.0);
thp_.resize(nw, 0.0);
temperature_.resize(nw, 273.15 + 20); // standard temperature for now
wellrates_.resize(nw * np, 0.0);
int connpos = 0;
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
// Initialize bhp(), thp(), wellRates().
initSingleWell(cellPressures, w, well, pu, summary_state);
// Setup wellname -> well index mapping.
const int num_perf_this_well = well_perf_data[w].size();
std::string name = well.name();
assert( name.size() > 0 );
mapentry_t& wellMapEntry = wellMap_[name];
wellMapEntry[ 0 ] = w;
wellMapEntry[ 1 ] = connpos;
wellMapEntry[ 2 ] = num_perf_this_well;
connpos += num_perf_this_well;
}
// The perforation rates and perforation pressures are
// not expected to be consistent with bhp_ and wellrates_
// after init().
perfrates_.resize(connpos, 0.0);
perfpress_.resize(connpos, -1e100);
}
}
/// One bhp pressure per well.
std::vector<double>& bhp() { return bhp_; }
const std::vector<double>& bhp() const { return bhp_; }
/// One thp pressure per well.
std::vector<double>& thp() { return thp_; }
const std::vector<double>& thp() const { return thp_; }
/// One temperature per well.
std::vector<double>& temperature() { return temperature_; }
const std::vector<double>& temperature() const { return temperature_; }
/// One rate per well and phase.
std::vector<double>& wellRates() { return wellrates_; }
const std::vector<double>& wellRates() const { return wellrates_; }
/// One rate per well connection.
std::vector<double>& perfRates() { return perfrates_; }
const std::vector<double>& perfRates() const { return perfrates_; }
/// One pressure per well connection.
std::vector<double>& perfPress() { return perfpress_; }
const std::vector<double>& perfPress() const { return perfpress_; }
size_t getRestartBhpOffset() const {
return 0;
}
size_t getRestartPerfPressOffset() const {
return bhp_.size();
}
size_t getRestartPerfRatesOffset() const {
return getRestartPerfPressOffset() + perfpress_.size();
}
size_t getRestartTemperatureOffset() const {
return getRestartPerfRatesOffset() + perfrates_.size();
}
size_t getRestartWellRatesOffset() const {
return getRestartTemperatureOffset() + temperature_.size();
}
const WellMapType& wellMap() const { return wellMap_; }
WellMapType& wellMap() { return wellMap_; }
/// The number of wells present.
int numWells() const
{
return bhp().size();
}
/// The number of phases present.
int numPhases() const
{
return np_;
}
virtual void shutWell(int well_index) {
this->open_for_output_[well_index] = false;
this->thp_[well_index] = 0;
this->bhp_[well_index] = 0;
const int np = numPhases();
for (int p = 0; p < np; ++p)
this->wellrates_[np * well_index + p] = 0;
}
virtual data::Wells report(const PhaseUsage& pu, const int* globalCellIdxMap) const
{
using rt = data::Rates::opt;
data::Wells dw;
for( const auto& itr : this->wellMap_ ) {
const auto well_index = itr.second[ 0 ];
if (!this->open_for_output_[well_index])
continue;
auto& well = dw[ itr.first ];
well.bhp = this->bhp().at( well_index );
well.thp = this->thp().at( well_index );
well.temperature = this->temperature().at( well_index );
const auto wellrate_index = well_index * pu.num_phases;
const auto& wv = this->wellRates();
if( pu.phase_used[BlackoilPhases::Aqua] ) {
well.rates.set( rt::wat, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ] );
}
if( pu.phase_used[BlackoilPhases::Liquid] ) {
well.rates.set( rt::oil, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ] );
}
if( pu.phase_used[BlackoilPhases::Vapour] ) {
well.rates.set( rt::gas, wv[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ] );
}
const int num_perf_well = this->well_perf_data_[well_index].size();
well.connections.resize(num_perf_well);
for( int i = 0; i < num_perf_well; ++i ) {
const auto active_index = this->well_perf_data_[well_index][i].cell_index;
auto& connection = well.connections[ i ];
connection.index = globalCellIdxMap[active_index];
connection.pressure = this->perfPress()[ itr.second[1] + i ];
connection.reservoir_rate = this->perfRates()[ itr.second[1] + i ];
}
assert(num_perf_well == int(well.connections.size()));
}
return dw;
}
virtual ~WellState() = default;
WellState() = default;
WellState(const WellState& rhs) = default;
WellState& operator=(const WellState& rhs) = default;
private:
std::vector<double> bhp_;
std::vector<double> thp_;
std::vector<double> temperature_;
std::vector<double> wellrates_;
std::vector<double> perfrates_;
std::vector<double> perfpress_;
int np_;
protected:
std::vector<bool> open_for_output_;
private:
WellMapType wellMap_;
void initSingleWell(const std::vector<double>& cellPressures,
const int w,
const Well& well,
const PhaseUsage& pu,
const SummaryState& summary_state)
{
assert(well.isInjector() || well.isProducer());
// Set default zero initial well rates.
// May be overwritten below.
const int np = pu.num_phases;
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = 0.0;
}
const int num_perf_this_well = well_perf_data_[w].size();
if ( num_perf_this_well == 0 ) {
// No perforations of the well. Initialize to zero.
bhp_[w] = 0.;
thp_[w] = 0.;
return;
}
const auto inj_controls = well.isInjector() ? well.injectionControls(summary_state) : Well::InjectionControls(0);
const auto prod_controls = well.isProducer() ? well.productionControls(summary_state) : Well::ProductionControls(0);
const bool is_bhp = well.isInjector() ? (inj_controls.cmode == Well::InjectorCMode::BHP)
: (prod_controls.cmode == Well::ProducerCMode::BHP);
const double bhp_limit = well.isInjector() ? inj_controls.bhp_limit : prod_controls.bhp_limit;
const bool is_grup = well.isInjector() ? (inj_controls.cmode == Well::InjectorCMode::GRUP)
: (prod_controls.cmode == Well::ProducerCMode::GRUP);
const double inj_surf_rate = well.isInjector() ? inj_controls.surface_rate : 0.0; // To avoid a "maybe-uninitialized" warning.
if (well.getStatus() == Well::Status::STOP) {
// Stopped well:
// 1. Rates: zero well rates.
// 2. Bhp: assign bhp equal to bhp control, if
// applicable, otherwise assign equal to
// first perforation cell pressure.
if (is_bhp) {
bhp_[w] = bhp_limit;
} else {
const int first_cell = well_perf_data_[w][0].cell_index;
bhp_[w] = cellPressures[first_cell];
}
} else if (is_grup) {
// Well under group control.
// 1. Rates: zero well rates.
// 2. Bhp: initialize bhp to be a
// little above or below (depending on if
// the well is an injector or producer)
// pressure in first perforation cell.
const int first_cell = well_perf_data_[w][0].cell_index;
const double safety_factor = well.isInjector() ? 1.01 : 0.99;
bhp_[w] = safety_factor*cellPressures[first_cell];
} else {
// Open well, under own control:
// 1. Rates: initialize well rates to match
// controls if type is ORAT/GRAT/WRAT
// (producer) or RATE (injector).
// Otherwise, we cannot set the correct
// value here and initialize to zero rate.
if (well.isInjector()) {
if (inj_controls.cmode == Well::InjectorCMode::RATE) {
switch (inj_controls.injector_type) {
case InjectorType::WATER:
assert(pu.phase_used[BlackoilPhases::Aqua]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Aqua]] = inj_surf_rate;
break;
case InjectorType::GAS:
assert(pu.phase_used[BlackoilPhases::Vapour]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Vapour]] = inj_surf_rate;
break;
case InjectorType::OIL:
assert(pu.phase_used[BlackoilPhases::Liquid]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Liquid]] = inj_surf_rate;
break;
case InjectorType::MULTI:
// Not currently handled, keep zero init.
break;
}
} else {
// Keep zero init.
}
} else {
assert(well.isProducer());
// Note negative rates for producing wells.
switch (prod_controls.cmode) {
case Well::ProducerCMode::ORAT:
assert(pu.phase_used[BlackoilPhases::Liquid]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Liquid]] = -prod_controls.oil_rate;
break;
case Well::ProducerCMode::WRAT:
assert(pu.phase_used[BlackoilPhases::Aqua]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Aqua]] = -prod_controls.water_rate;
break;
case Well::ProducerCMode::GRAT:
assert(pu.phase_used[BlackoilPhases::Vapour]);
wellrates_[np*w + pu.phase_pos[BlackoilPhases::Vapour]] = -prod_controls.gas_rate;
break;
default:
// Keep zero init.
break;
}
}
// 2. Bhp: initialize bhp to be target pressure if
// bhp-controlled well, otherwise set to a
// little above or below (depending on if
// the well is an injector or producer)
// pressure in first perforation cell.
if (is_bhp) {
bhp_[w] = bhp_limit;
} else {
const int first_cell = well_perf_data_[w][0].cell_index;
const double safety_factor = well.isInjector() ? 1.01 : 0.99;
bhp_[w] = safety_factor*cellPressures[first_cell];
}
}
// 3. Thp: assign thp equal to thp target/limit, if such a limit exists,
// otherwise keep it zero.
const bool has_thp = well.isInjector() ? inj_controls.hasControl(Well::InjectorCMode::THP)
: prod_controls.hasControl(Well::ProducerCMode::THP);
const double thp_limit = well.isInjector() ? inj_controls.thp_limit : prod_controls.thp_limit;
if (has_thp) {
thp_[w] = thp_limit;
}
}
protected:
std::vector<std::vector<PerforationData>> well_perf_data_;
};
} // namespace Opm
#endif // OPM_WELLSTATE_HEADER_INCLUDED