mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 01:41:55 -06:00
2643 lines
100 KiB
C++
2643 lines
100 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2014, 2015 Statoil ASA.
|
|
Copyright 2015 NTNU
|
|
Copyright 2015 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|
|
#define OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|
|
|
|
#include <opm/autodiff/BlackoilModelBase.hpp>
|
|
#include <opm/autodiff/BlackoilDetails.hpp>
|
|
#include <opm/autodiff/BlackoilLegacyDetails.hpp>
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/GridHelpers.hpp>
|
|
#include <opm/autodiff/WellHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
|
|
#include <opm/autodiff/GeoProps.hpp>
|
|
#include <opm/autodiff/WellDensitySegmented.hpp>
|
|
#include <opm/autodiff/VFPProperties.hpp>
|
|
#include <opm/autodiff/VFPProdProperties.hpp>
|
|
#include <opm/autodiff/VFPInjProperties.hpp>
|
|
|
|
#include <opm/grid/UnstructuredGrid.h>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
#include <opm/core/props/rock/RockCompressibility.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <opm/parser/eclipse/Units/Units.hpp>
|
|
#include <opm/core/well_controls.h>
|
|
#include <opm/common/utility/parameters/ParameterGroup.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
|
|
|
|
#include <dune/common/timer.hh>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
//#include <fstream>
|
|
|
|
// A debugging utility.
|
|
#define OPM_AD_DUMP(foo) \
|
|
do { \
|
|
std::cout << "==========================================\n" \
|
|
<< #foo ":\n" \
|
|
<< collapseJacs(foo) << std::endl; \
|
|
} while (0)
|
|
|
|
#define OPM_AD_DUMPVAL(foo) \
|
|
do { \
|
|
std::cout << "==========================================\n" \
|
|
<< #foo ":\n" \
|
|
<< foo.value() << std::endl; \
|
|
} while (0)
|
|
|
|
#define OPM_AD_DISKVAL(foo) \
|
|
do { \
|
|
std::ofstream os(#foo); \
|
|
os.precision(16); \
|
|
os << foo.value() << std::endl; \
|
|
} while (0)
|
|
|
|
|
|
namespace Opm {
|
|
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
typedef Eigen::Array<double,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor> DataBlock;
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
BlackoilModelBase(const ModelParameters& param,
|
|
const Grid& grid ,
|
|
const BlackoilPropsAdFromDeck& fluid,
|
|
const DerivedGeology& geo ,
|
|
const RockCompressibility* rock_comp_props,
|
|
const WellModel& well_model,
|
|
const NewtonIterationBlackoilInterface& linsolver,
|
|
std::shared_ptr< const Opm::EclipseState > eclState,
|
|
std::shared_ptr<const Opm::Schedule> schedule,
|
|
std::shared_ptr<const SummaryConfig> summary_config,
|
|
const bool has_disgas,
|
|
const bool has_vapoil,
|
|
const bool terminal_output)
|
|
: grid_ (grid)
|
|
, fluid_ (fluid)
|
|
, geo_ (geo)
|
|
, rock_comp_props_(rock_comp_props)
|
|
, vfp_properties_(
|
|
schedule->getVFPInjTables(well_model.currentStep()),
|
|
schedule->getVFPProdTables(well_model.currentStep() ) )
|
|
, linsolver_ (linsolver)
|
|
, active_(detail::activePhases(fluid.phaseUsage()))
|
|
, canph_ (detail::active2Canonical(fluid.phaseUsage()))
|
|
, cells_ (detail::buildAllCells(Opm::AutoDiffGrid::numCells(grid)))
|
|
, ops_ (grid, geo.nnc())
|
|
, has_disgas_(has_disgas)
|
|
, has_vapoil_(has_vapoil)
|
|
, param_( param )
|
|
, use_threshold_pressure_(false)
|
|
, sd_ (fluid.numPhases())
|
|
, phaseCondition_(AutoDiffGrid::numCells(grid))
|
|
, well_model_ (well_model)
|
|
, isRs_(V::Zero(AutoDiffGrid::numCells(grid)))
|
|
, isRv_(V::Zero(AutoDiffGrid::numCells(grid)))
|
|
, isSg_(V::Zero(AutoDiffGrid::numCells(grid)))
|
|
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
|
|
ADB::null(),
|
|
ADB::null(),
|
|
{ 1.1169, 1.0031, 0.0031 }, // the default magic numbers
|
|
false } )
|
|
, terminal_output_ (terminal_output)
|
|
, material_name_(0)
|
|
, current_relaxation_(1.0)
|
|
// only one region 0 used, which means average reservoir hydrocarbon conditions in
|
|
// the field will be calculated.
|
|
// TODO: more delicate implementation will be required if we want to handle different
|
|
// FIP regions specified from the well specifications.
|
|
, rate_converter_(fluid_.phaseUsage(), std::vector<int>(AutoDiffGrid::numCells(grid_),0))
|
|
{
|
|
if (active_[Water]) {
|
|
material_name_.push_back("Water");
|
|
}
|
|
if (active_[Oil]) {
|
|
material_name_.push_back("Oil");
|
|
}
|
|
if (active_[Gas]) {
|
|
material_name_.push_back("Gas");
|
|
}
|
|
|
|
assert(numMaterials() == std::accumulate(active_.begin(), active_.end(), 0)); // Due to the material_name_ init above.
|
|
|
|
const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_));
|
|
const V depth = Opm::AutoDiffGrid::cellCentroidsZToEigen(grid_);
|
|
|
|
well_model_.init(&fluid_, &active_, &phaseCondition_, &vfp_properties_, gravity, depth);
|
|
|
|
// TODO: put this for now to avoid modify the following code.
|
|
// TODO: this code can be fragile.
|
|
#if HAVE_MPI
|
|
const Wells* wells_arg = asImpl().well_model_.wellsPointer();
|
|
|
|
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
|
|
if ( terminal_output_ ) {
|
|
// Only rank 0 does print to std::cout if terminal_output is enabled
|
|
terminal_output_ = (info.communicator().rank()==0);
|
|
}
|
|
int local_number_of_wells = localWellsActive() ? wells().number_of_wells : 0;
|
|
int global_number_of_wells = info.communicator().sum(local_number_of_wells);
|
|
const bool wells_active = ( wells_arg && global_number_of_wells > 0 );
|
|
wellModel().setWellsActive(wells_active);
|
|
// Compute the global number of cells
|
|
std::vector<int> v( Opm::AutoDiffGrid::numCells(grid_), 1);
|
|
global_nc_ = 0;
|
|
info.computeReduction(v, Opm::Reduction::makeGlobalSumFunctor<int>(), global_nc_);
|
|
}else
|
|
#endif
|
|
{
|
|
wellModel().setWellsActive( localWellsActive() );
|
|
global_nc_ = Opm::AutoDiffGrid::numCells(grid_);
|
|
}
|
|
}
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
bool
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
isParallel() const
|
|
{
|
|
#if HAVE_MPI
|
|
if ( linsolver_.parallelInformation().type() !=
|
|
typeid(ParallelISTLInformation) )
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
const auto& comm =boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation()).communicator();
|
|
return comm.size() > 1;
|
|
}
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
prepareStep(const SimulatorTimerInterface& timer,
|
|
const ReservoirState& reservoir_state,
|
|
const WellState& /* well_state */)
|
|
{
|
|
const double dt = timer.currentStepLength();
|
|
|
|
pvdt_ = geo_.poreVolume() / dt;
|
|
if (active_[Gas]) {
|
|
updatePrimalVariableFromState(reservoir_state);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
template <class NonlinearSolverType>
|
|
SimulatorReport
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
nonlinearIteration(const int iteration,
|
|
const SimulatorTimerInterface& timer,
|
|
NonlinearSolverType& nonlinear_solver,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
SimulatorReport report;
|
|
Dune::Timer perfTimer;
|
|
|
|
perfTimer.start();
|
|
const double dt = timer.currentStepLength();
|
|
|
|
if (iteration == 0) {
|
|
// For each iteration we store in a vector the norms of the residual of
|
|
// the mass balance for each active phase, the well flux and the well equations.
|
|
residual_norms_history_.clear();
|
|
current_relaxation_ = 1.0;
|
|
dx_old_ = V::Zero(sizeNonLinear());
|
|
}
|
|
try {
|
|
report += asImpl().assemble(reservoir_state, well_state, iteration == 0);
|
|
report.assemble_time += perfTimer.stop();
|
|
}
|
|
catch (...) {
|
|
report.assemble_time += perfTimer.stop();
|
|
throw;
|
|
}
|
|
|
|
report.total_linearizations = 1;
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
report.converged = asImpl().getConvergence(timer, iteration);
|
|
residual_norms_history_.push_back(asImpl().computeResidualNorms());
|
|
report.update_time += perfTimer.stop();
|
|
|
|
const bool must_solve = (iteration < nonlinear_solver.minIter()) || (!report.converged);
|
|
if (must_solve) {
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
report.total_newton_iterations = 1;
|
|
|
|
// enable single precision for solvers when dt is smaller then maximal time step for single precision
|
|
residual_.singlePrecision = ( dt < param_.maxSinglePrecisionTimeStep_ );
|
|
|
|
// Compute the nonlinear update.
|
|
V dx;
|
|
try {
|
|
dx = asImpl().solveJacobianSystem();
|
|
report.linear_solve_time += perfTimer.stop();
|
|
report.total_linear_iterations += linearIterationsLastSolve();
|
|
}
|
|
catch (...) {
|
|
report.linear_solve_time += perfTimer.stop();
|
|
report.total_linear_iterations += linearIterationsLastSolve();
|
|
throw;
|
|
}
|
|
|
|
perfTimer.reset();
|
|
perfTimer.start();
|
|
|
|
if (param_.use_update_stabilization_) {
|
|
// Stabilize the nonlinear update.
|
|
bool isOscillate = false;
|
|
bool isStagnate = false;
|
|
nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
|
|
if (isOscillate) {
|
|
current_relaxation_ -= nonlinear_solver.relaxIncrement();
|
|
current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
|
|
if (terminalOutputEnabled()) {
|
|
std::string msg = " Oscillating behavior detected: Relaxation set to "
|
|
+ std::to_string(current_relaxation_);
|
|
OpmLog::info(msg);
|
|
}
|
|
}
|
|
nonlinear_solver.stabilizeNonlinearUpdate(dx, dx_old_, current_relaxation_);
|
|
}
|
|
|
|
// Apply the update, applying model-dependent
|
|
// limitations and chopping of the update.
|
|
asImpl().updateState(dx, reservoir_state, well_state);
|
|
report.update_time += perfTimer.stop();
|
|
}
|
|
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
afterStep(const SimulatorTimerInterface& /*timer*/,
|
|
ReservoirState& /* reservoir_state */,
|
|
WellState& /* well_state */)
|
|
{
|
|
// Does nothing in this model.
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
int
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
sizeNonLinear() const
|
|
{
|
|
return residual_.sizeNonLinear();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
int
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
linearIterationsLastSolve() const
|
|
{
|
|
return linsolver_.iterations();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
bool
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
terminalOutputEnabled() const
|
|
{
|
|
return terminal_output_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
int
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
numPhases() const
|
|
{
|
|
return fluid_.numPhases();
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
int
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
numMaterials() const
|
|
{
|
|
return material_name_.size();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
const std::string&
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
materialName(int material_index) const
|
|
{
|
|
assert(material_index < numMaterials());
|
|
return material_name_[material_index];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
setThresholdPressures(const std::vector<double>& threshold_pressures)
|
|
{
|
|
const int num_faces = AutoDiffGrid::numFaces(grid_);
|
|
const int num_nnc = geo_.nnc().numNNC();
|
|
const int num_connections = num_faces + num_nnc;
|
|
if (int(threshold_pressures.size()) != num_connections) {
|
|
OPM_THROW(std::runtime_error, "Illegal size of threshold_pressures input ( " << threshold_pressures.size()
|
|
<< " ), must be equal to number of faces + nncs ( " << num_faces << " + " << num_nnc << " ).");
|
|
}
|
|
use_threshold_pressure_ = true;
|
|
// Map to interior faces.
|
|
const int num_ifaces = ops_.internal_faces.size();
|
|
threshold_pressures_by_connection_.resize(num_ifaces + num_nnc);
|
|
for (int ii = 0; ii < num_ifaces; ++ii) {
|
|
threshold_pressures_by_connection_[ii] = threshold_pressures[ops_.internal_faces[ii]];
|
|
}
|
|
// Handle NNCs
|
|
// Note: the nnc threshold pressures is appended after the face threshold pressures
|
|
for (int ii = 0; ii < num_nnc; ++ii) {
|
|
threshold_pressures_by_connection_[ii + num_ifaces] = threshold_pressures[ii + num_faces];
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
ReservoirResidualQuant::ReservoirResidualQuant()
|
|
: accum(2, ADB::null())
|
|
, mflux( ADB::null())
|
|
, b ( ADB::null())
|
|
, mu ( ADB::null())
|
|
, rho ( ADB::null())
|
|
, kr ( ADB::null())
|
|
, dh ( ADB::null())
|
|
, mob ( ADB::null())
|
|
{
|
|
}
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
SimulatorData::SimulatorData(int num_phases)
|
|
: rq(num_phases)
|
|
, rsSat(ADB::null())
|
|
, rvSat(ADB::null())
|
|
, soMax()
|
|
, Pb()
|
|
, Pd()
|
|
, krnswdc_ow()
|
|
, krnswdc_go()
|
|
, pcswmdc_ow()
|
|
, pcswmdc_go()
|
|
, fip()
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
makeConstantState(SolutionState& state) const
|
|
{
|
|
// HACK: throw away the derivatives. this may not be the most
|
|
// performant way to do things, but it will make the state
|
|
// automatically consistent with variableState() (and doing
|
|
// things automatically is all the rage in this module ;)
|
|
state.pressure = ADB::constant(state.pressure.value());
|
|
state.temperature = ADB::constant(state.temperature.value());
|
|
state.rs = ADB::constant(state.rs.value());
|
|
state.rv = ADB::constant(state.rv.value());
|
|
const int num_phases = state.saturation.size();
|
|
for (int phaseIdx = 0; phaseIdx < num_phases; ++ phaseIdx) {
|
|
state.saturation[phaseIdx] = ADB::constant(state.saturation[phaseIdx].value());
|
|
}
|
|
state.qs = ADB::constant(state.qs.value());
|
|
state.bhp = ADB::constant(state.bhp.value());
|
|
assert(state.canonical_phase_pressures.size() == static_cast<std::size_t>(Opm::BlackoilPhases::MaxNumPhases));
|
|
for (int canphase = 0; canphase < Opm::BlackoilPhases::MaxNumPhases; ++canphase) {
|
|
ADB& pp = state.canonical_phase_pressures[canphase];
|
|
pp = ADB::constant(pp.value());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
typename BlackoilModelBase<Grid, WellModel, Implementation>::SolutionState
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
variableState(const ReservoirState& x,
|
|
const WellState& xw) const
|
|
{
|
|
std::vector<V> vars0 = asImpl().variableStateInitials(x, xw);
|
|
std::vector<ADB> vars = ADB::variables(vars0);
|
|
return asImpl().variableStateExtractVars(x, asImpl().variableStateIndices(), vars);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
std::vector<V>
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
variableStateInitials(const ReservoirState& x,
|
|
const WellState& xw) const
|
|
{
|
|
assert(active_[ Oil ]);
|
|
|
|
const int np = x.numPhases();
|
|
|
|
std::vector<V> vars0;
|
|
// p, Sw and Rs, Rv or Sg is used as primary depending on solution conditions
|
|
// and bhp and Q for the wells
|
|
vars0.reserve(np + 1);
|
|
variableReservoirStateInitials(x, vars0);
|
|
asImpl().wellModel().variableWellStateInitials(xw, vars0);
|
|
return vars0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
variableReservoirStateInitials(const ReservoirState& x, std::vector<V>& vars0) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int np = x.numPhases();
|
|
// Initial pressure.
|
|
assert (not x.pressure().empty());
|
|
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
|
|
vars0.push_back(p);
|
|
|
|
// Initial saturation.
|
|
assert (not x.saturation().empty());
|
|
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
|
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
|
// We do not handle a Water/Gas situation correctly, guard against it.
|
|
assert (active_[ Oil]);
|
|
if (active_[ Water ]) {
|
|
const V sw = s.col(pu.phase_pos[ Water ]);
|
|
vars0.push_back(sw);
|
|
}
|
|
|
|
if (active_[ Gas ]) {
|
|
// define new primary variable xvar depending on solution condition
|
|
V xvar(nc);
|
|
const V sg = s.col(pu.phase_pos[ Gas ]);
|
|
const V rs = Eigen::Map<const V>(& x.gasoilratio()[0], x.gasoilratio().size());
|
|
const V rv = Eigen::Map<const V>(& x.rv()[0], x.rv().size());
|
|
xvar = isRs_*rs + isRv_*rv + isSg_*sg;
|
|
vars0.push_back(xvar);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
std::vector<int>
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
variableStateIndices() const
|
|
{
|
|
assert(active_[Oil]);
|
|
std::vector<int> indices(5, -1);
|
|
int next = 0;
|
|
indices[Pressure] = next++;
|
|
if (active_[Water]) {
|
|
indices[Sw] = next++;
|
|
}
|
|
if (active_[Gas]) {
|
|
indices[Xvar] = next++;
|
|
}
|
|
asImpl().wellModel().variableStateWellIndices(indices, next);
|
|
assert(next == fluid_.numPhases() + 2);
|
|
return indices;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
typename BlackoilModelBase<Grid, WellModel, Implementation>::SolutionState
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
variableStateExtractVars(const ReservoirState& x,
|
|
const std::vector<int>& indices,
|
|
std::vector<ADB>& vars) const
|
|
{
|
|
//using namespace Opm::AutoDiffGrid;
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
|
|
|
SolutionState state(fluid_.numPhases());
|
|
|
|
// Pressure.
|
|
state.pressure = std::move(vars[indices[Pressure]]);
|
|
|
|
// Temperature cannot be a variable at this time (only constant).
|
|
const V temp = Eigen::Map<const V>(& x.temperature()[0], x.temperature().size());
|
|
state.temperature = ADB::constant(temp);
|
|
|
|
// Saturations
|
|
{
|
|
ADB so = ADB::constant(V::Ones(nc, 1));
|
|
|
|
if (active_[ Water ]) {
|
|
state.saturation[pu.phase_pos[ Water ]] = std::move(vars[indices[Sw]]);
|
|
const ADB& sw = state.saturation[pu.phase_pos[ Water ]];
|
|
so -= sw;
|
|
}
|
|
|
|
if (active_[ Gas ]) {
|
|
// Define Sg Rs and Rv in terms of xvar.
|
|
// Xvar is only defined if gas phase is active
|
|
const ADB& xvar = vars[indices[Xvar]];
|
|
ADB& sg = state.saturation[ pu.phase_pos[ Gas ] ];
|
|
sg = isSg_*xvar + isRv_*so;
|
|
so -= sg;
|
|
|
|
//Compute the phase pressures before computing RS/RV
|
|
{
|
|
const ADB& sw = (active_[ Water ]
|
|
? state.saturation[ pu.phase_pos[ Water ] ]
|
|
: ADB::null());
|
|
state.canonical_phase_pressures = computePressures(state.pressure, sw, so, sg);
|
|
}
|
|
|
|
if (active_[ Oil ]) {
|
|
// RS and RV is only defined if both oil and gas phase are active.
|
|
sd_.rsSat = fluidRsSat(state.canonical_phase_pressures[ Oil ], so , cells_);
|
|
if (has_disgas_) {
|
|
state.rs = (1-isRs_)*sd_.rsSat + isRs_*xvar;
|
|
} else {
|
|
state.rs = sd_.rsSat;
|
|
}
|
|
sd_.rvSat = fluidRvSat(state.canonical_phase_pressures[ Gas ], so , cells_);
|
|
if (has_vapoil_) {
|
|
state.rv = (1-isRv_)*sd_.rvSat + isRv_*xvar;
|
|
} else {
|
|
state.rv = sd_.rvSat;
|
|
}
|
|
sd_.soMax = fluid_.satOilMax();
|
|
fluid_.getGasOilHystParams(sd_.krnswdc_go, sd_.pcswmdc_go, cells_);
|
|
fluid_.getOilWaterHystParams(sd_.krnswdc_ow, sd_.pcswmdc_ow, cells_);
|
|
|
|
sd_.Pb = fluid_.bubblePointPressure(cells_,
|
|
state.temperature.value(),
|
|
state.rs.value());
|
|
sd_.Pd = fluid_.dewPointPressure(cells_,
|
|
state.temperature.value(),
|
|
state.rv.value());
|
|
}
|
|
}
|
|
else {
|
|
// Compute phase pressures also if gas phase is not active
|
|
const ADB& sw = (active_[ Water ]
|
|
? state.saturation[ pu.phase_pos[ Water ] ]
|
|
: ADB::null());
|
|
const ADB& sg = ADB::null();
|
|
state.canonical_phase_pressures = computePressures(state.pressure, sw, so, sg);
|
|
}
|
|
|
|
if (active_[ Oil ]) {
|
|
// Note that so is never a primary variable.
|
|
state.saturation[pu.phase_pos[ Oil ]] = std::move(so);
|
|
}
|
|
}
|
|
// wells
|
|
asImpl().wellModel().variableStateExtractWellsVars(indices, vars, state);
|
|
return state;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computeAccum(const SolutionState& state,
|
|
const int aix )
|
|
{
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
|
|
const ADB& press = state.pressure;
|
|
const ADB& temp = state.temperature;
|
|
const std::vector<ADB>& sat = state.saturation;
|
|
const ADB& rs = state.rs;
|
|
const ADB& rv = state.rv;
|
|
|
|
const std::vector<PhasePresence> cond = phaseCondition();
|
|
|
|
const ADB pv_mult = poroMult(press);
|
|
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (active_[ phase ]) {
|
|
const int pos = pu.phase_pos[ phase ];
|
|
sd_.rq[pos].b = asImpl().fluidReciprocFVF(phase, state.canonical_phase_pressures[phase], temp, rs, rv, cond);
|
|
sd_.rq[pos].accum[aix] = pv_mult * sd_.rq[pos].b * sat[pos];
|
|
// OPM_AD_DUMP(sd_.rq[pos].b);
|
|
// OPM_AD_DUMP(sd_.rq[pos].accum[aix]);
|
|
}
|
|
}
|
|
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
// Account for gas dissolved in oil and vaporized oil
|
|
const int po = pu.phase_pos[ Oil ];
|
|
const int pg = pu.phase_pos[ Gas ];
|
|
|
|
// Temporary copy to avoid contribution of dissolved gas in the vaporized oil
|
|
// when both dissolved gas and vaporized oil are present.
|
|
const ADB accum_gas_copy =sd_.rq[pg].accum[aix];
|
|
|
|
sd_.rq[pg].accum[aix] += state.rs * sd_.rq[po].accum[aix];
|
|
sd_.rq[po].accum[aix] += state.rv * accum_gas_copy;
|
|
// OPM_AD_DUMP(sd_.rq[pg].accum[aix]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
SimulatorReport
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
assemble(const ReservoirState& reservoir_state,
|
|
WellState& well_state,
|
|
const bool initial_assembly)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
|
|
SimulatorReport report;
|
|
|
|
// If we have VFP tables, we need the well connection
|
|
// pressures for the "simple" hydrostatic correction
|
|
// between well depth and vfp table depth.
|
|
if (isVFPActive()) {
|
|
SolutionState state = asImpl().variableState(reservoir_state, well_state);
|
|
SolutionState state0 = state;
|
|
asImpl().makeConstantState(state0);
|
|
asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
|
|
}
|
|
|
|
// set up the guide rate and group control
|
|
if (asImpl().wellModel().wellCollection()->groupControlActive() && initial_assembly) {
|
|
setupGroupControl(reservoir_state, well_state);
|
|
}
|
|
|
|
// Possibly switch well controls and updating well state to
|
|
// get reasonable initial conditions for the wells
|
|
asImpl().wellModel().updateWellControls(well_state);
|
|
|
|
if (asImpl().wellModel().wellCollection()->groupControlActive()) {
|
|
// enforce VREP control when necessary.
|
|
applyVREPGroupControl(reservoir_state, well_state);
|
|
|
|
asImpl().wellModel().wellCollection()->updateWellTargets(well_state.wellRates());
|
|
}
|
|
|
|
// Create the primary variables.
|
|
SolutionState state = asImpl().variableState(reservoir_state, well_state);
|
|
|
|
if (initial_assembly) {
|
|
// Create the (constant, derivativeless) initial state.
|
|
SolutionState state0 = state;
|
|
asImpl().makeConstantState(state0);
|
|
// Compute initial accumulation contributions
|
|
// and well connection pressures.
|
|
asImpl().computeAccum(state0, 0);
|
|
asImpl().wellModel().computeWellConnectionPressures(state0, well_state);
|
|
}
|
|
|
|
// OPM_AD_DISKVAL(state.pressure);
|
|
// OPM_AD_DISKVAL(state.saturation[0]);
|
|
// OPM_AD_DISKVAL(state.saturation[1]);
|
|
// OPM_AD_DISKVAL(state.saturation[2]);
|
|
// OPM_AD_DISKVAL(state.rs);
|
|
// OPM_AD_DISKVAL(state.rv);
|
|
// OPM_AD_DISKVAL(state.qs);
|
|
// OPM_AD_DISKVAL(state.bhp);
|
|
|
|
// -------- Mass balance equations --------
|
|
asImpl().assembleMassBalanceEq(state);
|
|
|
|
// -------- Well equations ----------
|
|
if ( ! wellsActive() ) {
|
|
return report;
|
|
}
|
|
|
|
std::vector<ADB> mob_perfcells;
|
|
std::vector<ADB> b_perfcells;
|
|
asImpl().wellModel().extractWellPerfProperties(state, sd_.rq, mob_perfcells, b_perfcells);
|
|
if (param_.solve_welleq_initially_ && initial_assembly) {
|
|
// solve the well equations as a pre-processing step
|
|
report += asImpl().solveWellEq(mob_perfcells, b_perfcells, reservoir_state, state, well_state);
|
|
}
|
|
V aliveWells;
|
|
std::vector<ADB> cq_s;
|
|
asImpl().wellModel().computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
|
|
asImpl().wellModel().updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
|
|
asImpl().wellModel().addWellFluxEq(cq_s, state, residual_);
|
|
asImpl().addWellContributionToMassBalanceEq(cq_s, state, well_state);
|
|
asImpl().wellModel().addWellControlEq(state, well_state, aliveWells, residual_);
|
|
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
assembleMassBalanceEq(const SolutionState& state)
|
|
{
|
|
// Compute b_p and the accumulation term b_p*s_p for each phase,
|
|
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
|
|
// These quantities are stored in sd_.rq[phase].accum[1].
|
|
// The corresponding accumulation terms from the start of
|
|
// the timestep (b^0_p*s^0_p etc.) were already computed
|
|
// on the initial call to assemble() and stored in sd_.rq[phase].accum[0].
|
|
asImpl().computeAccum(state, 1);
|
|
|
|
// Set up the common parts of the mass balance equations
|
|
// for each active phase.
|
|
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
|
|
const V trans_nnc = ops_.nnc_trans;
|
|
V trans_all(transi.size() + trans_nnc.size());
|
|
trans_all << transi, trans_nnc;
|
|
|
|
|
|
{
|
|
const std::vector<ADB> kr = asImpl().computeRelPerm(state);
|
|
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
|
|
sd_.rq[phaseIdx].kr = kr[canph_[phaseIdx]];
|
|
}
|
|
}
|
|
#pragma omp parallel for schedule(static)
|
|
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
|
|
const std::vector<PhasePresence>& cond = phaseCondition();
|
|
sd_.rq[phaseIdx].mu = asImpl().fluidViscosity(canph_[phaseIdx], state.canonical_phase_pressures[canph_[phaseIdx]], state.temperature, state.rs, state.rv, cond);
|
|
sd_.rq[phaseIdx].rho = asImpl().fluidDensity(canph_[phaseIdx], sd_.rq[phaseIdx].b, state.rs, state.rv);
|
|
asImpl().computeMassFlux(phaseIdx, trans_all, sd_.rq[phaseIdx].kr, sd_.rq[phaseIdx].mu, sd_.rq[phaseIdx].rho, state.canonical_phase_pressures[canph_[phaseIdx]], state);
|
|
|
|
residual_.material_balance_eq[ phaseIdx ] =
|
|
pvdt_ * (sd_.rq[phaseIdx].accum[1] - sd_.rq[phaseIdx].accum[0])
|
|
+ ops_.div*sd_.rq[phaseIdx].mflux;
|
|
}
|
|
|
|
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
|
|
|
|
// Add the extra (flux) terms to the mass balance equations
|
|
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
|
|
// The extra terms in the accumulation part of the equation are already handled.
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
|
|
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
|
|
|
|
const UpwindSelector<double> upwindOil(grid_, ops_,
|
|
sd_.rq[po].dh.value());
|
|
const ADB rs_face = upwindOil.select(state.rs);
|
|
|
|
const UpwindSelector<double> upwindGas(grid_, ops_,
|
|
sd_.rq[pg].dh.value());
|
|
const ADB rv_face = upwindGas.select(state.rv);
|
|
|
|
residual_.material_balance_eq[ pg ] += ops_.div * (rs_face * sd_.rq[po].mflux);
|
|
residual_.material_balance_eq[ po ] += ops_.div * (rv_face * sd_.rq[pg].mflux);
|
|
|
|
// OPM_AD_DUMP(residual_.material_balance_eq[ Gas ]);
|
|
|
|
}
|
|
|
|
|
|
if (param_.update_equations_scaling_) {
|
|
asImpl().updateEquationsScaling();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
updateEquationsScaling() {
|
|
ADB::V B;
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
for ( int idx=0; idx<MaxNumPhases; ++idx )
|
|
{
|
|
if (active_[idx]) {
|
|
const int pos = pu.phase_pos[idx];
|
|
const ADB& temp_b = sd_.rq[pos].b;
|
|
B = 1. / temp_b.value();
|
|
#if HAVE_MPI
|
|
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const ParallelISTLInformation& real_info =
|
|
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
|
|
double B_global_sum = 0;
|
|
real_info.computeReduction(B, Reduction::makeGlobalSumFunctor<double>(), B_global_sum);
|
|
residual_.matbalscale[idx] = B_global_sum / global_nc_;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
residual_.matbalscale[idx] = B.mean();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
|
|
const SolutionState&,
|
|
const WellState&)
|
|
{
|
|
if ( !asImpl().localWellsActive() )
|
|
{
|
|
// If there are no wells in the subdomain of the proces then
|
|
// cq_s has zero size and will cause a segmentation fault below.
|
|
return;
|
|
}
|
|
|
|
// Add well contributions to mass balance equations
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const int np = asImpl().numPhases();
|
|
const V& efficiency_factors = wellModel().wellPerfEfficiencyFactors();
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
residual_.material_balance_eq[phase] -= superset(efficiency_factors * cq_s[phase],
|
|
wellModel().wellOps().well_cells, nc);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
bool
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
isVFPActive() const
|
|
{
|
|
if( ! localWellsActive() ) {
|
|
return false;
|
|
}
|
|
|
|
if ( vfp_properties_.getProd()->empty() && vfp_properties_.getInj()->empty() ) {
|
|
return false;
|
|
}
|
|
|
|
const int nw = wells().number_of_wells;
|
|
//Loop over all wells
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells().ctrls[w];
|
|
|
|
const int nwc = well_controls_get_num(wc);
|
|
|
|
//Loop over all controls
|
|
for (int c=0; c < nwc; ++c) {
|
|
const WellControlType ctrl_type = well_controls_iget_type(wc, c);
|
|
|
|
if (ctrl_type == THP) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
SimulatorReport
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
solveWellEq(const std::vector<ADB>& mob_perfcells,
|
|
const std::vector<ADB>& b_perfcells,
|
|
const ReservoirState& reservoir_state,
|
|
SolutionState& state,
|
|
WellState& well_state)
|
|
{
|
|
V aliveWells;
|
|
const int np = wells().number_of_phases;
|
|
std::vector<ADB> cq_s(np, ADB::null());
|
|
std::vector<int> indices = asImpl().wellModel().variableWellStateIndices();
|
|
SolutionState state0 = state;
|
|
WellState well_state0 = well_state;
|
|
asImpl().makeConstantState(state0);
|
|
|
|
std::vector<ADB> mob_perfcells_const(np, ADB::null());
|
|
std::vector<ADB> b_perfcells_const(np, ADB::null());
|
|
|
|
if (asImpl().localWellsActive() ){
|
|
// If there are non well in the sudomain of the process
|
|
// thene mob_perfcells_const and b_perfcells_const would be empty
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
mob_perfcells_const[phase] = ADB::constant(mob_perfcells[phase].value());
|
|
b_perfcells_const[phase] = ADB::constant(b_perfcells[phase].value());
|
|
}
|
|
}
|
|
|
|
int it = 0;
|
|
bool converged;
|
|
do {
|
|
// bhp and Q for the wells
|
|
std::vector<V> vars0;
|
|
vars0.reserve(2);
|
|
asImpl().wellModel().variableWellStateInitials(well_state, vars0);
|
|
std::vector<ADB> vars = ADB::variables(vars0);
|
|
|
|
SolutionState wellSolutionState = state0;
|
|
asImpl().wellModel().variableStateExtractWellsVars(indices, vars, wellSolutionState);
|
|
asImpl().wellModel().computeWellFlux(wellSolutionState, mob_perfcells_const, b_perfcells_const, aliveWells, cq_s);
|
|
asImpl().wellModel().updatePerfPhaseRatesAndPressures(cq_s, wellSolutionState, well_state);
|
|
asImpl().wellModel().addWellFluxEq(cq_s, wellSolutionState, residual_);
|
|
asImpl().wellModel().addWellControlEq(wellSolutionState, well_state, aliveWells, residual_);
|
|
converged = getWellConvergence(it);
|
|
|
|
if (converged) {
|
|
break;
|
|
}
|
|
|
|
++it;
|
|
if( localWellsActive() )
|
|
{
|
|
std::vector<ADB> eqs;
|
|
eqs.reserve(2);
|
|
eqs.push_back(residual_.well_flux_eq);
|
|
eqs.push_back(residual_.well_eq);
|
|
ADB total_residual = vertcatCollapseJacs(eqs);
|
|
const std::vector<M>& Jn = total_residual.derivative();
|
|
typedef Eigen::SparseMatrix<double> Sp;
|
|
Sp Jn0;
|
|
Jn[0].toSparse(Jn0);
|
|
const Eigen::SparseLU< Sp > solver(Jn0);
|
|
ADB::V total_residual_v = total_residual.value();
|
|
const Eigen::VectorXd& dx = solver.solve(total_residual_v.matrix());
|
|
assert(dx.size() == total_residual_v.size());
|
|
asImpl().wellModel().updateWellState(dx.array(), dbhpMaxRel(), well_state);
|
|
}
|
|
// We have to update the well controls regardless whether there are local
|
|
// wells active or not as parallel logging will take place that needs to
|
|
// communicate with all processes.
|
|
asImpl().wellModel().updateWellControls(well_state);
|
|
|
|
if (asImpl().wellModel().wellCollection()->groupControlActive()) {
|
|
// Enforce the VREP control
|
|
applyVREPGroupControl(reservoir_state, well_state);
|
|
asImpl().wellModel().wellCollection()->updateWellTargets(well_state.wellRates());
|
|
}
|
|
} while (it < 15);
|
|
|
|
if (converged) {
|
|
if (terminalOutputEnabled())
|
|
{
|
|
OpmLog::note("well converged iter: " + std::to_string(it));
|
|
}
|
|
|
|
const int nw = wells().number_of_wells;
|
|
{
|
|
// We will set the bhp primary variable to the new ones,
|
|
// but we do not change the derivatives here.
|
|
ADB::V new_bhp = Eigen::Map<ADB::V>(well_state.bhp().data(), nw);
|
|
// Avoiding the copy below would require a value setter method
|
|
// in AutoDiffBlock.
|
|
std::vector<ADB::M> old_derivs = state.bhp.derivative();
|
|
state.bhp = ADB::function(std::move(new_bhp), std::move(old_derivs));
|
|
}
|
|
{
|
|
// Need to reshuffle well rates, from phase running fastest
|
|
// to wells running fastest.
|
|
// The transpose() below switches the ordering.
|
|
const DataBlock wrates = Eigen::Map<const DataBlock>(well_state.wellRates().data(), nw, np).transpose();
|
|
ADB::V new_qs = Eigen::Map<const V>(wrates.data(), nw*np);
|
|
std::vector<ADB::M> old_derivs = state.qs.derivative();
|
|
state.qs = ADB::function(std::move(new_qs), std::move(old_derivs));
|
|
}
|
|
asImpl().computeWellConnectionPressures(state, well_state);
|
|
}
|
|
|
|
if (!converged) {
|
|
well_state = well_state0;
|
|
}
|
|
|
|
SimulatorReport report;
|
|
report.total_well_iterations = it;
|
|
report.converged = converged;
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
V
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
solveJacobianSystem() const
|
|
{
|
|
return linsolver_.computeNewtonIncrement(residual_);
|
|
}
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
updateState(const V& dx,
|
|
ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int np = fluid_.numPhases();
|
|
const int nc = numCells(grid_);
|
|
const V null;
|
|
assert(null.size() == 0);
|
|
const V zero = V::Zero(nc);
|
|
const V ones = V::Constant(nc,1.0);
|
|
|
|
// Extract parts of dx corresponding to each part.
|
|
const V dp = subset(dx, Span(nc));
|
|
int varstart = nc;
|
|
const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null;
|
|
varstart += dsw.size();
|
|
|
|
const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null;
|
|
varstart += dxvar.size();
|
|
|
|
// Extract well parts np phase rates + bhp
|
|
const V dwells = subset(dx, Span(asImpl().wellModel().numWellVars(), 1, varstart));
|
|
varstart += dwells.size();
|
|
|
|
assert(varstart == dx.size());
|
|
|
|
// Pressure update.
|
|
const double dpmaxrel = dpMaxRel();
|
|
const V p_old = Eigen::Map<const V>(&reservoir_state.pressure()[0], nc, 1);
|
|
const V absdpmax = dpmaxrel*p_old.abs();
|
|
const V dp_limited = sign(dp) * dp.abs().min(absdpmax);
|
|
const V p = (p_old - dp_limited).max(zero);
|
|
std::copy(&p[0], &p[0] + nc, reservoir_state.pressure().begin());
|
|
|
|
// Saturation updates.
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const DataBlock s_old = Eigen::Map<const DataBlock>(& reservoir_state.saturation()[0], nc, np);
|
|
const double dsmax = dsMax();
|
|
|
|
V so;
|
|
V sw;
|
|
V sg;
|
|
|
|
{
|
|
V maxVal = zero;
|
|
V dso = zero;
|
|
if (active_[Water]){
|
|
maxVal = dsw.abs().max(maxVal);
|
|
dso = dso - dsw;
|
|
}
|
|
|
|
V dsg;
|
|
if (active_[Gas]){
|
|
dsg = isSg_ * dxvar - isRv_ * dsw;
|
|
maxVal = dsg.abs().max(maxVal);
|
|
dso = dso - dsg;
|
|
}
|
|
|
|
maxVal = dso.abs().max(maxVal);
|
|
|
|
V step = dsmax/maxVal;
|
|
step = step.min(1.);
|
|
|
|
if (active_[Water]) {
|
|
const int pos = pu.phase_pos[ Water ];
|
|
const V sw_old = s_old.col(pos);
|
|
sw = sw_old - step * dsw;
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
const int pos = pu.phase_pos[ Gas ];
|
|
const V sg_old = s_old.col(pos);
|
|
sg = sg_old - step * dsg;
|
|
}
|
|
|
|
assert(active_[Oil]);
|
|
const int pos = pu.phase_pos[ Oil ];
|
|
const V so_old = s_old.col(pos);
|
|
so = so_old - step * dso;
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
auto ixg = sg < 0;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (ixg[c]) {
|
|
if (active_[Water]) {
|
|
sw[c] = sw[c] / (1-sg[c]);
|
|
}
|
|
so[c] = so[c] / (1-sg[c]);
|
|
sg[c] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (active_[Oil]) {
|
|
auto ixo = so < 0;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (ixo[c]) {
|
|
if (active_[Water]) {
|
|
sw[c] = sw[c] / (1-so[c]);
|
|
}
|
|
if (active_[Gas]) {
|
|
sg[c] = sg[c] / (1-so[c]);
|
|
}
|
|
so[c] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (active_[Water]) {
|
|
auto ixw = sw < 0;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (ixw[c]) {
|
|
so[c] = so[c] / (1-sw[c]);
|
|
if (active_[Gas]) {
|
|
sg[c] = sg[c] / (1-sw[c]);
|
|
}
|
|
sw[c] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update rs and rv
|
|
const double drmaxrel = drMaxRel();
|
|
V rs;
|
|
if (has_disgas_) {
|
|
const V rs_old = Eigen::Map<const V>(&reservoir_state.gasoilratio()[0], nc);
|
|
const V drs = isRs_ * dxvar;
|
|
const V drs_limited = sign(drs) * drs.abs().min( (rs_old.abs()*drmaxrel).max( ones*1.0));
|
|
rs = rs_old - drs_limited;
|
|
rs = rs.max(zero);
|
|
}
|
|
V rv;
|
|
if (has_vapoil_) {
|
|
const V rv_old = Eigen::Map<const V>(&reservoir_state.rv()[0], nc);
|
|
const V drv = isRv_ * dxvar;
|
|
const V drv_limited = sign(drv) * drv.abs().min( (rv_old.abs()*drmaxrel).max( ones*1e-3));
|
|
rv = rv_old - drv_limited;
|
|
rv = rv.max(zero);
|
|
}
|
|
|
|
// Sg is used as primal variable for water only cells.
|
|
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
|
|
auto watOnly = sw > (1 - epsilon);
|
|
|
|
// phase translation sg <-> rs
|
|
std::vector<HydroCarbonState>& hydroCarbonState = reservoir_state.hydroCarbonState();
|
|
std::fill(hydroCarbonState.begin(), hydroCarbonState.end(), HydroCarbonState::GasAndOil);
|
|
|
|
if (has_disgas_) {
|
|
const V rsSat0 = fluidRsSat(p_old, s_old.col(pu.phase_pos[Oil]), cells_);
|
|
const V rsSat = fluidRsSat(p, so, cells_);
|
|
sd_.rsSat = ADB::constant(rsSat);
|
|
// The obvious case
|
|
auto hasGas = (sg > 0 && isRs_ == 0);
|
|
|
|
// Set oil saturated if previous rs is sufficiently large
|
|
const V rs_old = Eigen::Map<const V>(&reservoir_state.gasoilratio()[0], nc);
|
|
auto gasVaporized = ( (rs > rsSat * (1+epsilon) && isRs_ == 1 ) && (rs_old > rsSat0 * (1-epsilon)) );
|
|
auto useSg = watOnly || hasGas || gasVaporized;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (useSg[c]) {
|
|
rs[c] = rsSat[c];
|
|
if (watOnly[c]) {
|
|
so[c] = 0;
|
|
sg[c] = 0;
|
|
rs[c] = 0;
|
|
}
|
|
} else {
|
|
hydroCarbonState[c] = HydroCarbonState::OilOnly;
|
|
}
|
|
}
|
|
//rs = rs.min(rsSat);
|
|
}
|
|
|
|
// phase transitions so <-> rv
|
|
if (has_vapoil_) {
|
|
|
|
// The gas pressure is needed for the rvSat calculations
|
|
const V gaspress_old = computeGasPressure(p_old, s_old.col(Water), s_old.col(Oil), s_old.col(Gas));
|
|
const V gaspress = computeGasPressure(p, sw, so, sg);
|
|
const V rvSat0 = fluidRvSat(gaspress_old, s_old.col(pu.phase_pos[Oil]), cells_);
|
|
const V rvSat = fluidRvSat(gaspress, so, cells_);
|
|
sd_.rvSat = ADB::constant(rvSat);
|
|
|
|
// The obvious case
|
|
auto hasOil = (so > 0 && isRv_ == 0);
|
|
|
|
// Set oil saturated if previous rv is sufficiently large
|
|
const V rv_old = Eigen::Map<const V>(&reservoir_state.rv()[0], nc);
|
|
auto oilCondensed = ( (rv > rvSat * (1+epsilon) && isRv_ == 1) && (rv_old > rvSat0 * (1-epsilon)) );
|
|
auto useSg = watOnly || hasOil || oilCondensed;
|
|
for (int c = 0; c < nc; ++c) {
|
|
if (useSg[c]) {
|
|
rv[c] = rvSat[c];
|
|
if (watOnly[c]) {
|
|
so[c] = 0;
|
|
sg[c] = 0;
|
|
rv[c] = 0;
|
|
}
|
|
} else {
|
|
hydroCarbonState[c] = HydroCarbonState::GasOnly;
|
|
}
|
|
}
|
|
//rv = rv.min(rvSat);
|
|
}
|
|
|
|
// Update the reservoir_state
|
|
if (active_[Water]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
reservoir_state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c];
|
|
}
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
reservoir_state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c];
|
|
}
|
|
}
|
|
|
|
if (active_[ Oil ]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
reservoir_state.saturation()[c*np + pu.phase_pos[ Oil ]] = so[c];
|
|
}
|
|
}
|
|
|
|
if (has_disgas_) {
|
|
std::copy(&rs[0], &rs[0] + nc, reservoir_state.gasoilratio().begin());
|
|
}
|
|
|
|
if (has_vapoil_) {
|
|
std::copy(&rv[0], &rv[0] + nc, reservoir_state.rv().begin());
|
|
}
|
|
|
|
asImpl().wellModel().updateWellState(dwells, dbhpMaxRel(), well_state);
|
|
|
|
// Update phase conditions used for property calculations.
|
|
updatePhaseCondFromPrimalVariable(reservoir_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
std::vector<ADB>
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computeRelPerm(const SolutionState& state) const
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
|
|
const ADB zero = ADB::constant(V::Zero(nc));
|
|
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const ADB& sw = (active_[ Water ]
|
|
? state.saturation[ pu.phase_pos[ Water ] ]
|
|
: zero);
|
|
|
|
const ADB& so = (active_[ Oil ]
|
|
? state.saturation[ pu.phase_pos[ Oil ] ]
|
|
: zero);
|
|
|
|
const ADB& sg = (active_[ Gas ]
|
|
? state.saturation[ pu.phase_pos[ Gas ] ]
|
|
: zero);
|
|
|
|
return fluid_.relperm(sw, so, sg, cells_);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
std::vector<ADB>
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computePressures(const ADB& po,
|
|
const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg) const
|
|
{
|
|
// convert the pressure offsets to the capillary pressures
|
|
std::vector<ADB> pressure = fluid_.capPress(sw, so, sg, cells_);
|
|
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
|
|
// The reference pressure is always the liquid phase (oil) pressure.
|
|
if (phaseIdx == BlackoilPhases::Liquid)
|
|
continue;
|
|
if (active_[phaseIdx]) {
|
|
pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid];
|
|
}
|
|
}
|
|
|
|
// Since pcow = po - pw, but pcog = pg - po,
|
|
// we have
|
|
// pw = po - pcow
|
|
// pg = po + pcgo
|
|
// This is an unfortunate inconsistency, but a convention we must handle.
|
|
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
|
|
if (active_[phaseIdx]) {
|
|
if (phaseIdx == BlackoilPhases::Aqua) {
|
|
pressure[phaseIdx] = po - pressure[phaseIdx];
|
|
} else {
|
|
pressure[phaseIdx] += po;
|
|
}
|
|
}
|
|
}
|
|
|
|
return pressure;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
V
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computeGasPressure(const V& po,
|
|
const V& sw,
|
|
const V& so,
|
|
const V& sg) const
|
|
{
|
|
assert (active_[Gas]);
|
|
std::vector<ADB> cp = fluid_.capPress(ADB::constant(sw),
|
|
ADB::constant(so),
|
|
ADB::constant(sg),
|
|
cells_);
|
|
return cp[Gas].value() + po;
|
|
}
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computeMassFlux(const int actph ,
|
|
const V& transi,
|
|
const ADB& kr ,
|
|
const ADB& mu ,
|
|
const ADB& rho ,
|
|
const ADB& phasePressure,
|
|
const SolutionState& state)
|
|
{
|
|
// Compute and store mobilities.
|
|
const ADB tr_mult = transMult(state.pressure);
|
|
sd_.rq[ actph ].mob = tr_mult * kr / mu;
|
|
|
|
// Compute head differentials. Gravity potential is done using the face average as in eclipse and MRST.
|
|
const ADB rhoavg = ops_.caver * rho;
|
|
sd_.rq[ actph ].dh = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
|
|
if (use_threshold_pressure_) {
|
|
applyThresholdPressures(sd_.rq[ actph ].dh);
|
|
}
|
|
|
|
// Compute phase fluxes with upwinding of formation value factor and mobility.
|
|
const ADB& b = sd_.rq[ actph ].b;
|
|
const ADB& mob = sd_.rq[ actph ].mob;
|
|
const ADB& dh = sd_.rq[ actph ].dh;
|
|
UpwindSelector<double> upwind(grid_, ops_, dh.value());
|
|
sd_.rq[ actph ].mflux = upwind.select(b * mob) * (transi * dh);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
applyThresholdPressures(ADB& dp)
|
|
{
|
|
// We support reversible threshold pressures only.
|
|
// Method: if the potential difference is lower (in absolute
|
|
// value) than the threshold for any face, then the potential
|
|
// (and derivatives) is set to zero. If it is above the
|
|
// threshold, the threshold pressure is subtracted from the
|
|
// absolute potential (the potential is moved towards zero).
|
|
|
|
// Identify the set of faces where the potential is under the
|
|
// threshold, that shall have zero flow. Storing the bool
|
|
// Array as a V (a double Array) with 1 and 0 elements, a
|
|
// 1 where flow is allowed, a 0 where it is not.
|
|
const V high_potential = (dp.value().abs() >= threshold_pressures_by_connection_).template cast<double>();
|
|
|
|
// Create a sparse vector that nullifies the low potential elements.
|
|
const M keep_high_potential(high_potential.matrix().asDiagonal());
|
|
|
|
// Find the current sign for the threshold modification
|
|
const V sign_dp = sign(dp.value());
|
|
const V threshold_modification = sign_dp * threshold_pressures_by_connection_;
|
|
|
|
// Modify potential and nullify where appropriate.
|
|
dp = keep_high_potential * (dp - threshold_modification);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
std::vector<double>
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computeResidualNorms() const
|
|
{
|
|
std::vector<double> residualNorms;
|
|
|
|
std::vector<ADB>::const_iterator massBalanceIt = residual_.material_balance_eq.begin();
|
|
const std::vector<ADB>::const_iterator endMassBalanceIt = residual_.material_balance_eq.end();
|
|
|
|
for (; massBalanceIt != endMassBalanceIt; ++massBalanceIt) {
|
|
const double massBalanceResid = detail::infinityNorm( (*massBalanceIt),
|
|
linsolver_.parallelInformation() );
|
|
if (!std::isfinite(massBalanceResid)) {
|
|
OPM_THROW(Opm::NumericalIssue,
|
|
"Encountered a non-finite residual");
|
|
}
|
|
residualNorms.push_back(massBalanceResid);
|
|
}
|
|
|
|
// the following residuals are not used in the oscillation detection now
|
|
const double wellFluxResid = detail::infinityNormWell( residual_.well_flux_eq,
|
|
linsolver_.parallelInformation() );
|
|
if (!std::isfinite(wellFluxResid)) {
|
|
OPM_THROW(Opm::NumericalIssue,
|
|
"Encountered a non-finite residual");
|
|
}
|
|
residualNorms.push_back(wellFluxResid);
|
|
|
|
const double wellResid = detail::infinityNormWell( residual_.well_eq,
|
|
linsolver_.parallelInformation() );
|
|
if (!std::isfinite(wellResid)) {
|
|
OPM_THROW(Opm::NumericalIssue,
|
|
"Encountered a non-finite residual");
|
|
}
|
|
residualNorms.push_back(wellResid);
|
|
|
|
return residualNorms;
|
|
}
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
double
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
relativeChange(const SimulationDataContainer& previous,
|
|
const SimulationDataContainer& current ) const
|
|
{
|
|
std::vector< double > p0 ( previous.pressure() );
|
|
std::vector< double > sat0( previous.saturation() );
|
|
|
|
const std::size_t pSize = p0.size();
|
|
const std::size_t satSize = sat0.size();
|
|
|
|
// compute u^n - u^n+1
|
|
for( std::size_t i=0; i<pSize; ++i ) {
|
|
p0[ i ] -= current.pressure()[ i ];
|
|
}
|
|
|
|
for( std::size_t i=0; i<satSize; ++i ) {
|
|
sat0[ i ] -= current.saturation()[ i ];
|
|
}
|
|
|
|
// compute || u^n - u^n+1 ||
|
|
const double stateOld = detail::euclidianNormSquared( p0.begin(), p0.end(), 1, linsolver_.parallelInformation() ) +
|
|
detail::euclidianNormSquared( sat0.begin(), sat0.end(),
|
|
current.numPhases(),
|
|
linsolver_.parallelInformation() );
|
|
|
|
// compute || u^n+1 ||
|
|
const double stateNew = detail::euclidianNormSquared( current.pressure().begin(), current.pressure().end(), 1, linsolver_.parallelInformation() ) +
|
|
detail::euclidianNormSquared( current.saturation().begin(), current.saturation().end(),
|
|
current.numPhases(),
|
|
linsolver_.parallelInformation() );
|
|
|
|
if( stateNew > 0.0 ) {
|
|
return stateOld / stateNew ;
|
|
}
|
|
else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
double
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& B,
|
|
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& tempV,
|
|
const Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic>& R,
|
|
std::vector<double>& R_sum,
|
|
std::vector<double>& maxCoeff,
|
|
std::vector<double>& B_avg,
|
|
std::vector<double>& maxNormWell,
|
|
int nc) const
|
|
{
|
|
const int np = asImpl().numPhases();
|
|
const int nm = asImpl().numMaterials();
|
|
const int nw = residual_.well_flux_eq.size() / np;
|
|
assert(nw * np == int(residual_.well_flux_eq.size()));
|
|
|
|
// Do the global reductions
|
|
#if HAVE_MPI
|
|
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
|
|
|
|
// Compute the global number of cells and porevolume
|
|
std::vector<int> v(nc, 1);
|
|
auto nc_and_pv = std::tuple<int, double>(0, 0.0);
|
|
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<int>(),
|
|
Opm::Reduction::makeGlobalSumFunctor<double>());
|
|
auto nc_and_pv_containers = std::make_tuple(v, geo_.poreVolume());
|
|
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
|
|
|
|
for ( int idx = 0; idx < nm; ++idx )
|
|
{
|
|
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
|
|
auto containers = std::make_tuple(B.col(idx),
|
|
tempV.col(idx),
|
|
R.col(idx));
|
|
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
|
|
Opm::Reduction::makeGlobalMaxFunctor<double>(),
|
|
Opm::Reduction::makeGlobalSumFunctor<double>());
|
|
info.computeReduction(containers, operators, values);
|
|
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
|
|
maxCoeff[idx] = std::get<1>(values);
|
|
R_sum[idx] = std::get<2>(values);
|
|
assert(nm >= np);
|
|
if (idx < np) {
|
|
maxNormWell[idx] = 0.0;
|
|
for ( int w = 0; w < nw; ++w ) {
|
|
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
|
|
}
|
|
}
|
|
}
|
|
info.communicator().max(maxNormWell.data(), np);
|
|
// Compute pore volume
|
|
return std::get<1>(nc_and_pv);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
B_avg.resize(nm);
|
|
maxCoeff.resize(nm);
|
|
R_sum.resize(nm);
|
|
maxNormWell.resize(np);
|
|
for ( int idx = 0; idx < nm; ++idx )
|
|
{
|
|
B_avg[idx] = B.col(idx).sum()/nc;
|
|
maxCoeff[idx] = tempV.col(idx).maxCoeff();
|
|
R_sum[idx] = R.col(idx).sum();
|
|
|
|
assert(nm >= np);
|
|
if (idx < np) {
|
|
maxNormWell[idx] = 0.0;
|
|
for ( int w = 0; w < nw; ++w ) {
|
|
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
|
|
}
|
|
}
|
|
}
|
|
// Compute total pore volume
|
|
return geo_.poreVolume().sum();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
bool
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
getConvergence(const SimulatorTimerInterface& timer, const int iteration)
|
|
{
|
|
const double dt = timer.currentStepLength();
|
|
const double tol_mb = param_.tolerance_mb_;
|
|
const double tol_cnv = param_.tolerance_cnv_;
|
|
const double tol_wells = param_.tolerance_wells_;
|
|
const double tol_well_control = param_.tolerance_well_control_;
|
|
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const int np = asImpl().numPhases();
|
|
const int nm = asImpl().numMaterials();
|
|
assert(int(sd_.rq.size()) == nm);
|
|
|
|
const V& pv = geo_.poreVolume();
|
|
|
|
std::vector<double> R_sum(nm);
|
|
std::vector<double> B_avg(nm);
|
|
std::vector<double> maxCoeff(nm);
|
|
std::vector<double> maxNormWell(np);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> B(nc, nm);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> R(nc, nm);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> tempV(nc, nm);
|
|
|
|
for ( int idx = 0; idx < nm; ++idx )
|
|
{
|
|
const ADB& tempB = sd_.rq[idx].b;
|
|
B.col(idx) = 1./tempB.value();
|
|
R.col(idx) = residual_.material_balance_eq[idx].value();
|
|
tempV.col(idx) = R.col(idx).abs()/pv;
|
|
}
|
|
|
|
const double pvSum = convergenceReduction(B, tempV, R,
|
|
R_sum, maxCoeff, B_avg, maxNormWell,
|
|
nc);
|
|
|
|
std::vector<double> CNV(nm);
|
|
std::vector<double> mass_balance_residual(nm);
|
|
std::vector<double> well_flux_residual(np);
|
|
|
|
bool converged_MB = true;
|
|
bool converged_CNV = true;
|
|
bool converged_Well = true;
|
|
// Finish computation
|
|
for ( int idx = 0; idx < nm; ++idx )
|
|
{
|
|
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
|
|
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
|
|
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
|
|
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
|
|
// Well flux convergence is only for fluid phases, not other materials
|
|
// in our current implementation.
|
|
assert(nm >= np);
|
|
if (idx < np) {
|
|
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
|
|
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
|
|
}
|
|
}
|
|
|
|
const double residualWell = detail::infinityNormWell(residual_.well_eq,
|
|
linsolver_.parallelInformation());
|
|
converged_Well = converged_Well && (residualWell < tol_well_control);
|
|
|
|
const bool converged = converged_MB && converged_CNV && converged_Well;
|
|
|
|
// Residual in Pascal can have high values and still be ok.
|
|
const double maxWellResidualAllowed = 1000.0 * maxResidualAllowed();
|
|
|
|
if ( terminal_output_ )
|
|
{
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::string msg = "Iter";
|
|
for (int idx = 0; idx < nm; ++idx) {
|
|
msg += " MB(" + materialName(idx).substr(0, 3) + ") ";
|
|
}
|
|
for (int idx = 0; idx < nm; ++idx) {
|
|
msg += " CNV(" + materialName(idx).substr(0, 1) + ") ";
|
|
}
|
|
for (int idx = 0; idx < np; ++idx) {
|
|
msg += " W-FLUX(" + materialName(idx).substr(0, 1) + ")";
|
|
}
|
|
msg += " WELL-CONT";
|
|
// std::cout << " WELL-CONT ";
|
|
OpmLog::debug(msg);
|
|
}
|
|
std::ostringstream ss;
|
|
const std::streamsize oprec = ss.precision(3);
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
ss << std::setw(4) << iteration;
|
|
for (int idx = 0; idx < nm; ++idx) {
|
|
ss << std::setw(11) << mass_balance_residual[idx];
|
|
}
|
|
for (int idx = 0; idx < nm; ++idx) {
|
|
ss << std::setw(11) << CNV[idx];
|
|
}
|
|
for (int idx = 0; idx < np; ++idx) {
|
|
ss << std::setw(11) << well_flux_residual[idx];
|
|
}
|
|
ss << std::setw(11) << residualWell;
|
|
// std::cout << std::setw(11) << residualWell;
|
|
ss.precision(oprec);
|
|
ss.flags(oflags);
|
|
OpmLog::debug(ss.str());
|
|
}
|
|
|
|
for (int idx = 0; idx < nm; ++idx) {
|
|
if (std::isnan(mass_balance_residual[idx])
|
|
|| std::isnan(CNV[idx])
|
|
|| (idx < np && std::isnan(well_flux_residual[idx]))) {
|
|
const auto msg = std::string("NaN residual for phase ") + materialName(idx);
|
|
if (terminal_output_) {
|
|
OpmLog::bug(msg);
|
|
}
|
|
OPM_THROW_NOLOG(Opm::NumericalIssue, msg);
|
|
}
|
|
if (mass_balance_residual[idx] > maxResidualAllowed()
|
|
|| CNV[idx] > maxResidualAllowed()
|
|
|| (idx < np && well_flux_residual[idx] > maxResidualAllowed())) {
|
|
const auto msg = std::string("Too large residual for phase ") + materialName(idx);
|
|
if (terminal_output_) {
|
|
OpmLog::problem(msg);
|
|
}
|
|
OPM_THROW_NOLOG(Opm::NumericalIssue, msg);
|
|
}
|
|
}
|
|
if (std::isnan(residualWell) || residualWell > maxWellResidualAllowed) {
|
|
const auto msg = std::string("NaN or too large residual for well control equation");
|
|
if (terminal_output_) {
|
|
OpmLog::problem(msg);
|
|
}
|
|
OPM_THROW_NOLOG(Opm::NumericalIssue, msg);
|
|
}
|
|
|
|
return converged;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
bool
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
getWellConvergence(const int iteration)
|
|
{
|
|
const double tol_wells = param_.tolerance_wells_;
|
|
const double tol_well_control = param_.tolerance_well_control_;
|
|
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
const int np = asImpl().numPhases();
|
|
const int nm = asImpl().numMaterials();
|
|
|
|
const V& pv = geo_.poreVolume();
|
|
std::vector<double> R_sum(nm);
|
|
std::vector<double> B_avg(nm);
|
|
std::vector<double> maxCoeff(nm);
|
|
std::vector<double> maxNormWell(np);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> B(nc, nm);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> R(nc, nm);
|
|
Eigen::Array<V::Scalar, Eigen::Dynamic, Eigen::Dynamic> tempV(nc, nm);
|
|
for ( int idx = 0; idx < nm; ++idx )
|
|
{
|
|
const ADB& tempB = sd_.rq[idx].b;
|
|
B.col(idx) = 1./tempB.value();
|
|
R.col(idx) = residual_.material_balance_eq[idx].value();
|
|
tempV.col(idx) = R.col(idx).abs()/pv;
|
|
}
|
|
|
|
convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg, maxNormWell, nc);
|
|
|
|
std::vector<double> well_flux_residual(np);
|
|
bool converged_Well = true;
|
|
// Finish computation
|
|
for ( int idx = 0; idx < np; ++idx )
|
|
{
|
|
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
|
|
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
|
|
}
|
|
|
|
const double residualWell = detail::infinityNormWell(residual_.well_eq,
|
|
linsolver_.parallelInformation());
|
|
converged_Well = converged_Well && (residualWell < tol_well_control);
|
|
|
|
const bool converged = converged_Well;
|
|
|
|
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
|
|
for (int idx = 0; idx < np; ++idx) {
|
|
if (std::isnan(well_flux_residual[idx])) {
|
|
const auto msg = std::string("NaN residual for phase ") + materialName(idx);
|
|
if (terminal_output_) {
|
|
OpmLog::bug(msg);
|
|
}
|
|
OPM_THROW_NOLOG(Opm::NumericalIssue, msg);
|
|
}
|
|
if (well_flux_residual[idx] > maxResidualAllowed()) {
|
|
const auto msg = std::string("Too large residual for phase ") + materialName(idx);
|
|
if (terminal_output_) {
|
|
OpmLog::problem(msg);
|
|
}
|
|
OPM_THROW_NOLOG(Opm::NumericalIssue, msg);
|
|
}
|
|
}
|
|
|
|
if ( terminal_output_ )
|
|
{
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::string msg;
|
|
msg = "Iter";
|
|
for (int idx = 0; idx < np; ++idx) {
|
|
msg += " W-FLUX(" + materialName(idx).substr(0, 1) + ")";
|
|
}
|
|
msg += " WELL-CONT";
|
|
OpmLog::debug(msg);
|
|
}
|
|
std::ostringstream ss;
|
|
const std::streamsize oprec = ss.precision(3);
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
ss << std::setw(4) << iteration;
|
|
for (int idx = 0; idx < np; ++idx) {
|
|
ss << std::setw(11) << well_flux_residual[idx];
|
|
}
|
|
ss << std::setw(11) << residualWell;
|
|
ss.precision(oprec);
|
|
ss.flags(oflags);
|
|
OpmLog::debug(ss.str());
|
|
}
|
|
return converged;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
ADB
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
fluidViscosity(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.muWat(p, temp, cells_);
|
|
case Oil:
|
|
return fluid_.muOil(p, temp, rs, cond, cells_);
|
|
case Gas:
|
|
return fluid_.muGas(p, temp, rv, cond, cells_);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
ADB
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
fluidReciprocFVF(const int phase,
|
|
const ADB& p ,
|
|
const ADB& temp ,
|
|
const ADB& rs ,
|
|
const ADB& rv ,
|
|
const std::vector<PhasePresence>& cond) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.bWat(p, temp, cells_);
|
|
case Oil:
|
|
return fluid_.bOil(p, temp, rs, cond, cells_);
|
|
case Gas:
|
|
return fluid_.bGas(p, temp, rv, cond, cells_);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
ADB
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
fluidDensity(const int phase,
|
|
const ADB& b,
|
|
const ADB& rs,
|
|
const ADB& rv) const
|
|
{
|
|
const V& rhos = fluid_.surfaceDensity(phase, cells_);
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
ADB rho = rhos * b;
|
|
if (phase == Oil && active_[Gas]) {
|
|
rho += fluid_.surfaceDensity(pu.phase_pos[ Gas ], cells_) * rs * b;
|
|
}
|
|
if (phase == Gas && active_[Oil]) {
|
|
rho += fluid_.surfaceDensity(pu.phase_pos[ Oil ], cells_) * rv * b;
|
|
}
|
|
return rho;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
V
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
fluidRsSat(const V& p,
|
|
const V& satOil,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rsSat(ADB::constant(p), ADB::constant(satOil), cells).value();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
ADB
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
fluidRsSat(const ADB& p,
|
|
const ADB& satOil,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rsSat(p, satOil, cells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
V
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
fluidRvSat(const V& p,
|
|
const V& satOil,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rvSat(ADB::constant(p), ADB::constant(satOil), cells).value();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
ADB
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
fluidRvSat(const ADB& p,
|
|
const ADB& satOil,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rvSat(p, satOil, cells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
ADB
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
poroMult(const ADB& p) const
|
|
{
|
|
const int n = p.size();
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
V pm(n);
|
|
V dpm(n);
|
|
#pragma omp parallel for schedule(static)
|
|
for (int i = 0; i < n; ++i) {
|
|
pm[i] = rock_comp_props_->poroMult(p.value()[i]);
|
|
dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]);
|
|
}
|
|
ADB::M dpm_diag(dpm.matrix().asDiagonal());
|
|
const int num_blocks = p.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
fastSparseProduct(dpm_diag, p.derivative()[block], jacs[block]);
|
|
}
|
|
return ADB::function(std::move(pm), std::move(jacs));
|
|
} else {
|
|
return ADB::constant(V::Constant(n, 1.0));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
ADB
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
transMult(const ADB& p) const
|
|
{
|
|
const int n = p.size();
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
V tm(n);
|
|
V dtm(n);
|
|
#pragma omp parallel for schedule(static)
|
|
for (int i = 0; i < n; ++i) {
|
|
tm[i] = rock_comp_props_->transMult(p.value()[i]);
|
|
dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]);
|
|
}
|
|
ADB::M dtm_diag(dtm.matrix().asDiagonal());
|
|
const int num_blocks = p.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
fastSparseProduct(dtm_diag, p.derivative()[block], jacs[block]);
|
|
}
|
|
return ADB::function(std::move(tm), std::move(jacs));
|
|
} else {
|
|
return ADB::constant(V::Constant(n, 1.0));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
classifyCondition(const ReservoirState& state)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
const int np = state.numPhases();
|
|
|
|
const PhaseUsage& pu = fluid_.phaseUsage();
|
|
const DataBlock s = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
|
|
if (active_[ Gas ]) {
|
|
// Oil/Gas or Water/Oil/Gas system
|
|
const V so = s.col(pu.phase_pos[ Oil ]);
|
|
const V sg = s.col(pu.phase_pos[ Gas ]);
|
|
|
|
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
|
|
if (so[c] > 0) { phaseCondition_[c].setFreeOil (); }
|
|
if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); }
|
|
if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); }
|
|
}
|
|
}
|
|
else {
|
|
// Water/Oil system
|
|
assert (active_[ Water ]);
|
|
|
|
const V so = s.col(pu.phase_pos[ Oil ]);
|
|
|
|
|
|
for (V::Index c = 0, e = so.size(); c != e; ++c) {
|
|
phaseCondition_[c].setFreeWater();
|
|
|
|
if (so[c] > 0) { phaseCondition_[c].setFreeOil(); }
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
updatePrimalVariableFromState(const ReservoirState& state)
|
|
{
|
|
updatePhaseCondFromPrimalVariable(state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Update the phaseCondition_ member based on the primalVariable_ member.
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
updatePhaseCondFromPrimalVariable(const ReservoirState& state)
|
|
{
|
|
const int nc = Opm::AutoDiffGrid::numCells(grid_);
|
|
isRs_ = V::Zero(nc);
|
|
isRv_ = V::Zero(nc);
|
|
isSg_ = V::Zero(nc);
|
|
|
|
if (! (active_[Gas] && active_[Oil])) {
|
|
// updatePhaseCondFromPrimarVariable() logic requires active gas and oil phase.
|
|
phaseCondition_.assign(nc, PhasePresence());
|
|
return;
|
|
}
|
|
for (int c = 0; c < nc; ++c) {
|
|
phaseCondition_[c] = PhasePresence(); // No free phases.
|
|
phaseCondition_[c].setFreeWater(); // Not necessary for property calculation usage.
|
|
switch (state.hydroCarbonState()[c]) {
|
|
case HydroCarbonState::GasAndOil:
|
|
phaseCondition_[c].setFreeOil();
|
|
phaseCondition_[c].setFreeGas();
|
|
isSg_[c] = 1;
|
|
break;
|
|
case HydroCarbonState::OilOnly:
|
|
phaseCondition_[c].setFreeOil();
|
|
isRs_[c] = 1;
|
|
break;
|
|
case HydroCarbonState::GasOnly:
|
|
phaseCondition_[c].setFreeGas();
|
|
isRv_[c] = 1;
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << c << ": " << state.hydroCarbonState()[c]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computeWellConnectionPressures(const SolutionState& state,
|
|
const WellState& well_state)
|
|
{
|
|
asImpl().wellModel().computeWellConnectionPressures(state, well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
std::vector<std::vector<double> >
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computeFluidInPlace(const ReservoirState& x,
|
|
const std::vector<int>& fipnum)
|
|
{
|
|
using namespace Opm::AutoDiffGrid;
|
|
const int nc = numCells(grid_);
|
|
std::vector<ADB> saturation(3, ADB::null());
|
|
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, x.numPhases());
|
|
const ADB pressure = ADB::constant(Eigen::Map<const V>(& x.pressure()[0], nc, 1));
|
|
const ADB temperature = ADB::constant(Eigen::Map<const V>(& x.temperature()[0], nc, 1));
|
|
saturation[Water] = active_[Water] ? ADB::constant(s.col(Water)) : ADB::null();
|
|
saturation[Oil] = active_[Oil] ? ADB::constant(s.col(Oil)) : ADB::constant(V::Zero(nc));
|
|
saturation[Gas] = active_[Gas] ? ADB::constant(s.col(Gas)) : ADB::constant(V::Zero(nc));
|
|
const ADB rs = ADB::constant(Eigen::Map<const V>(& x.gasoilratio()[0], nc, 1));
|
|
const ADB rv = ADB::constant(Eigen::Map<const V>(& x.rv()[0], nc, 1));
|
|
const auto canonical_phase_pressures = computePressures(pressure, saturation[Water], saturation[Oil], saturation[Gas]);
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const std::vector<PhasePresence> cond = phaseCondition();
|
|
|
|
const ADB pv_mult = poroMult(pressure);
|
|
const V& pv = geo_.poreVolume();
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (active_[ phase ]) {
|
|
const int pos = pu.phase_pos[ phase ];
|
|
const auto& b = asImpl().fluidReciprocFVF(phase, canonical_phase_pressures[phase], temperature, rs, rv, cond);
|
|
sd_.fip[phase] = ((pv_mult * b * saturation[pos] * pv).value());
|
|
}
|
|
}
|
|
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
// Account for gas dissolved in oil and vaporized oil
|
|
sd_.fip[SimulatorData::FIP_DISSOLVED_GAS] = rs.value() * sd_.fip[SimulatorData::FIP_LIQUID];
|
|
sd_.fip[SimulatorData::FIP_VAPORIZED_OIL] = rv.value() * sd_.fip[SimulatorData::FIP_VAPOUR];
|
|
}
|
|
|
|
// For a parallel run this is just a local maximum and needs to be updated later
|
|
int dims = *std::max_element(fipnum.begin(), fipnum.end());
|
|
std::vector<std::vector<double> > values(dims);
|
|
for (int i=0; i < dims; ++i) {
|
|
values[i].resize(7, 0.0);
|
|
}
|
|
|
|
const V hydrocarbon = saturation[Oil].value() + saturation[Gas].value();
|
|
V hcpv;
|
|
V pres;
|
|
|
|
if ( !isParallel() )
|
|
{
|
|
//Accumulate phases for each region
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (active_[ phase ]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1) {
|
|
values[region][phase] += sd_.fip[phase][c];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Accumulate RS and RV-volumes for each region
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1) {
|
|
values[region][SimulatorData::FIP_DISSOLVED_GAS] += sd_.fip[SimulatorData::FIP_DISSOLVED_GAS][c];
|
|
values[region][SimulatorData::FIP_VAPORIZED_OIL] += sd_.fip[SimulatorData::FIP_VAPORIZED_OIL][c];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
hcpv = V::Zero(dims);
|
|
pres = V::Zero(dims);
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1) {
|
|
hcpv[region] += pv[c] * hydrocarbon[c];
|
|
pres[region] += pv[c] * pressure.value()[c];
|
|
}
|
|
}
|
|
|
|
sd_.fip[SimulatorData::FIP_PV] = V::Zero(nc);
|
|
sd_.fip[SimulatorData::FIP_WEIGHTED_PRESSURE] = V::Zero(nc);
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1) {
|
|
sd_.fip[SimulatorData::FIP_PV][c] = pv[c];
|
|
|
|
//Compute hydrocarbon pore volume weighted average pressure.
|
|
//If we have no hydrocarbon in region, use pore volume weighted average pressure instead
|
|
if (hcpv[region] != 0) {
|
|
sd_.fip[SimulatorData::FIP_WEIGHTED_PRESSURE][c] = pv[c] * pressure.value()[c] * hydrocarbon[c] / hcpv[region];
|
|
} else {
|
|
sd_.fip[SimulatorData::FIP_WEIGHTED_PRESSURE][c] = pres[region] / pv[c];
|
|
}
|
|
|
|
values[region][SimulatorData::FIP_PV] += sd_.fip[SimulatorData::FIP_PV][c];
|
|
values[region][SimulatorData::FIP_WEIGHTED_PRESSURE] += sd_.fip[SimulatorData::FIP_WEIGHTED_PRESSURE][c];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#if HAVE_MPI
|
|
// mask[c] is 1 if we need to compute something in parallel
|
|
const auto & pinfo =
|
|
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
|
|
const auto& mask = pinfo.getOwnerMask();
|
|
auto comm = pinfo.communicator();
|
|
// Compute the global dims value and resize values accordingly.
|
|
dims = comm.max(dims);
|
|
values.resize(dims);
|
|
for (int i=0; i < dims; ++i) {
|
|
values[i].resize(7);
|
|
std::fill(values[i].begin(), values[i].end(), 0.0);
|
|
}
|
|
|
|
//Accumulate phases for each region
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1 && mask[c]) {
|
|
values[region][phase] += sd_.fip[phase][c];
|
|
}
|
|
}
|
|
}
|
|
|
|
//Accumulate RS and RV-volumes for each region
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1 && mask[c]) {
|
|
values[region][SimulatorData::FIP_DISSOLVED_GAS] += sd_.fip[SimulatorData::FIP_DISSOLVED_GAS][c];
|
|
values[region][SimulatorData::FIP_VAPORIZED_OIL] += sd_.fip[SimulatorData::FIP_VAPORIZED_OIL][c];
|
|
}
|
|
}
|
|
}
|
|
|
|
hcpv = V::Zero(dims);
|
|
pres = V::Zero(dims);
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1 && mask[c]) {
|
|
hcpv[region] += pv[c] * hydrocarbon[c];
|
|
pres[region] += pv[c] * pressure.value()[c];
|
|
}
|
|
}
|
|
|
|
comm.sum(hcpv.data(), hcpv.size());
|
|
comm.sum(pres.data(), pres.size());
|
|
|
|
sd_.fip[SimulatorData::FIP_PV] = V::Zero(nc);
|
|
sd_.fip[SimulatorData::FIP_WEIGHTED_PRESSURE] = V::Zero(nc);
|
|
|
|
for (int c = 0; c < nc; ++c) {
|
|
const int region = fipnum[c] - 1;
|
|
if (region != -1 && mask[c]) {
|
|
sd_.fip[SimulatorData::FIP_PV][c] = pv[c];
|
|
|
|
if (hcpv[region] != 0) {
|
|
sd_.fip[SimulatorData::FIP_WEIGHTED_PRESSURE][c] = pv[c] * pressure.value()[c] * hydrocarbon[c] / hcpv[region];
|
|
} else {
|
|
sd_.fip[SimulatorData::FIP_WEIGHTED_PRESSURE][c] = pres[region] / pv[c];
|
|
}
|
|
|
|
values[region][SimulatorData::FIP_PV] += sd_.fip[SimulatorData::FIP_PV][c];
|
|
values[region][SimulatorData::FIP_WEIGHTED_PRESSURE] += sd_.fip[SimulatorData::FIP_WEIGHTED_PRESSURE][c];
|
|
}
|
|
}
|
|
|
|
// For the frankenstein branch we hopefully can turn values into a vanilla
|
|
// std::vector<double>, use some index magic above, use one communication
|
|
// to sum up the vector entries instead of looping over the regions.
|
|
for(int reg=0; reg < dims; ++reg)
|
|
{
|
|
comm.sum(values[reg].data(), values[reg].size());
|
|
}
|
|
#else
|
|
// This should never happen!
|
|
OPM_THROW(std::logic_error, "HAVE_MPI should be defined if we are running in parallel");
|
|
#endif
|
|
}
|
|
|
|
return values;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
computeWellVoidageRates(const ReservoirState& reservoir_state,
|
|
const WellState& well_state,
|
|
std::vector<double>& well_voidage_rates,
|
|
std::vector<double>& voidage_conversion_coeffs)
|
|
{
|
|
// TODO: for now, we store the voidage rates for all the production wells.
|
|
// For injection wells, the rates are stored as zero.
|
|
// We only store the conversion coefficients for all the injection wells.
|
|
// Later, more delicate model will be implemented here.
|
|
// And for the moment, group control can only work for serial running.
|
|
const int nw = well_state.numWells();
|
|
const int np = numPhases();
|
|
|
|
const Wells* wells = asImpl().wellModel().wellsPointer();
|
|
|
|
// we calculate the voidage rate for each well, that means the sum of all the phases.
|
|
well_voidage_rates.resize(nw, 0);
|
|
// store the conversion coefficients, while only for the use of injection wells.
|
|
voidage_conversion_coeffs.resize(nw * np, 1.0);
|
|
|
|
int global_number_wells = nw;
|
|
|
|
#if HAVE_MPI
|
|
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const auto& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
|
|
global_number_wells = info.communicator().sum(global_number_wells);
|
|
if ( global_number_wells )
|
|
{
|
|
rate_converter_.defineState(reservoir_state, boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation()));
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if ( global_number_wells )
|
|
{
|
|
rate_converter_.defineState(reservoir_state);
|
|
}
|
|
}
|
|
|
|
std::vector<double> well_rates(np, 0.0);
|
|
std::vector<double> convert_coeff(np, 1.0);
|
|
|
|
|
|
if ( !well_voidage_rates.empty() ) {
|
|
for (int w = 0; w < nw; ++w) {
|
|
const bool is_producer = wells->type[w] == PRODUCER;
|
|
|
|
// not sure necessary to change all the value to be positive
|
|
if (is_producer) {
|
|
std::transform(well_state.wellRates().begin() + np * w,
|
|
well_state.wellRates().begin() + np * (w + 1),
|
|
well_rates.begin(), std::negate<double>());
|
|
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
const int well_cell_top = wells->well_cells[wells->well_connpos[w]];
|
|
const int pvtreg = fluid_.cellPvtRegionIndex()[well_cell_top];
|
|
|
|
rate_converter_.calcCoeff(fipreg, pvtreg, convert_coeff);
|
|
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
|
|
convert_coeff.begin(), 0.0);
|
|
} else {
|
|
// TODO: Not sure whether will encounter situation with all zero rates
|
|
// and whether it will cause problem here.
|
|
std::copy(well_state.wellRates().begin() + np * w,
|
|
well_state.wellRates().begin() + np * (w + 1),
|
|
well_rates.begin());
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
const int well_cell_top = wells->well_cells[wells->well_connpos[w]];
|
|
const int pvtreg = fluid_.cellPvtRegionIndex()[well_cell_top];
|
|
rate_converter_.calcCoeff(fipreg, pvtreg, convert_coeff);
|
|
std::copy(convert_coeff.begin(), convert_coeff.end(),
|
|
voidage_conversion_coeffs.begin() + np * w);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
applyVREPGroupControl(const ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
if (asImpl().wellModel().wellCollection()->havingVREPGroups()) {
|
|
std::vector<double> well_voidage_rates;
|
|
std::vector<double> voidage_conversion_coeffs;
|
|
computeWellVoidageRates(reservoir_state, well_state, well_voidage_rates, voidage_conversion_coeffs);
|
|
asImpl().wellModel().wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
|
|
|
|
// for the wells under group control, update the currentControls for the well_state
|
|
for (const WellNode* well_node : asImpl().wellModel().wellCollection()->getLeafNodes()) {
|
|
if (well_node->isInjector() && !well_node->individualControl()) {
|
|
const int well_index = well_node->selfIndex();
|
|
well_state.currentControls()[well_index] = well_node->groupControlIndex();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class Grid, class WellModel, class Implementation>
|
|
void
|
|
BlackoilModelBase<Grid, WellModel, Implementation>::
|
|
setupGroupControl(const ReservoirState& reservoir_state,
|
|
WellState& well_state)
|
|
{
|
|
if (asImpl().wellModel().wellCollection()->requireWellPotentials()) {
|
|
SolutionState state = asImpl().variableState(reservoir_state, well_state);
|
|
asImpl().makeConstantState(state);
|
|
asImpl().wellModel().computeWellConnectionPressures(state, well_state);
|
|
|
|
const int np = numPhases();
|
|
std::vector<ADB> b(np, ADB::null());
|
|
std::vector<ADB> mob(np, ADB::null());
|
|
|
|
const ADB& press = state.pressure;
|
|
const ADB& temp = state.temperature;
|
|
const ADB& rs = state.rs;
|
|
const ADB& rv = state.rv;
|
|
|
|
const std::vector<PhasePresence> cond = phaseCondition();
|
|
|
|
const ADB pv_mult = poroMult(press);
|
|
const ADB tr_mult = transMult(press);
|
|
const std::vector<ADB> kr = asImpl().computeRelPerm(state);
|
|
|
|
std::vector<ADB> mob_perfcells(np, ADB::null());
|
|
std::vector<ADB> b_perfcells(np, ADB::null());
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (active_[phase]) {
|
|
const std::vector<int>& well_cells = asImpl().wellModel().wellOps().well_cells;
|
|
const ADB mu = asImpl().fluidViscosity(canph_[phase], state.canonical_phase_pressures[canph_[phase]],
|
|
temp, rs, rv, cond);
|
|
mob[phase] = tr_mult * kr[canph_[phase]] / mu;
|
|
mob_perfcells[phase] = subset(mob[phase], well_cells);
|
|
|
|
b[phase] = asImpl().fluidReciprocFVF(phase, state.canonical_phase_pressures[phase], temp, rs, rv, cond);
|
|
b_perfcells[phase] = subset(b[phase], well_cells);
|
|
}
|
|
}
|
|
|
|
// well potentials for each well
|
|
std::vector<double> well_potentials;
|
|
asImpl().wellModel().computeWellPotentials(mob_perfcells, b_perfcells, well_state, state, well_potentials);
|
|
asImpl().wellModel().wellCollection()->setGuideRatesWithPotentials(asImpl().wellModel().wellsPointer(),
|
|
fluid_.phaseUsage(), well_potentials);
|
|
} // end of if
|
|
|
|
applyVREPGroupControl(reservoir_state, well_state);
|
|
|
|
if (asImpl().wellModel().wellCollection()->groupControlApplied()) {
|
|
asImpl().wellModel().wellCollection()->updateWellTargets(well_state.wellRates());
|
|
} else {
|
|
asImpl().wellModel().wellCollection()->applyGroupControls();
|
|
|
|
// the well collections do not have access to Well State, so the currentControls() of Well State need to
|
|
// be updated based on the group control setup
|
|
const int nw = wells().number_of_wells;
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellNode& well_node = asImpl().wellModel().wellCollection()->findWellNode(wells().name[w]);
|
|
if (!well_node.individualControl()) {
|
|
well_state.currentControls()[w] = well_node.groupControlIndex();
|
|
}
|
|
}
|
|
} // end of else
|
|
}
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_BLACKOILMODELBASE_IMPL_HEADER_INCLUDED
|