mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 08:41:00 -06:00
ac2bc410f3
note that almost the only thing which is affected is legacy code.
505 lines
23 KiB
C++
505 lines
23 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services.
|
|
Copyright 2015 NTNU.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED
|
|
#define OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/BlackoilModelEnums.hpp>
|
|
|
|
#include <opm/core/props/satfunc/SaturationPropsFromDeck.hpp>
|
|
#include <opm/core/props/rock/RockFromDeck.hpp>
|
|
|
|
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
|
|
#include <opm/material/densead/Math.hpp>
|
|
#include <opm/material/densead/Evaluation.hpp>
|
|
|
|
#include <opm/parser/eclipse/Deck/Deck.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
|
|
#include <memory>
|
|
#include <array>
|
|
#include <vector>
|
|
|
|
#ifdef HAVE_OPM_GRID
|
|
#include <opm/common/utility/platform_dependent/disable_warnings.h>
|
|
#include <opm/grid/CpGrid.hpp>
|
|
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
|
|
#endif
|
|
|
|
namespace Opm
|
|
{
|
|
class PvtInterface;
|
|
|
|
/// This class implements the AD-adapted fluid interface for
|
|
/// three-phase black-oil. It requires an input deck from which it
|
|
/// reads all relevant property data.
|
|
///
|
|
/// Most methods are available in two overloaded versions, one
|
|
/// taking a constant vector and returning the same, and one
|
|
/// taking an AD type and returning the same. Derivatives are not
|
|
/// returned separately by any method, only implicitly with the AD
|
|
/// version of the methods.
|
|
class BlackoilPropsAdFromDeck
|
|
{
|
|
friend class BlackoilPropsDataHandle;
|
|
public:
|
|
typedef BlackOilFluidSystem<double> FluidSystem;
|
|
typedef Opm::GasPvtMultiplexer<double> GasPvt;
|
|
typedef Opm::OilPvtMultiplexer<double> OilPvt;
|
|
typedef Opm::WaterPvtMultiplexer<double> WaterPvt;
|
|
|
|
typedef typename SaturationPropsFromDeck::MaterialLawManager MaterialLawManager;
|
|
|
|
/// Constructor to create a blackoil properties from an ECL deck.
|
|
///
|
|
/// The materialLawManager parameter represents the object from opm-material
|
|
/// which handles the creating and updating parameter objects for the capillary
|
|
/// pressure/relperm relations for each grid cell. This object is created
|
|
/// internally for the constructors below, but if it is already available
|
|
/// externally some performance can be gained by creating it only once.
|
|
///
|
|
/// \param deck The unprocessed ECL deck from opm-parser
|
|
/// \param eclState The processed ECL deck from opm-parser
|
|
/// \param materialLawManager The container for the material law parameter objects
|
|
/// \param grid The grid upon which the simulation is run on.
|
|
/// \param init_rock If true the rock properties (rock compressibility and
|
|
/// reference pressure) are read from the deck
|
|
BlackoilPropsAdFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
std::shared_ptr<MaterialLawManager> materialLawManager,
|
|
const UnstructuredGrid& grid,
|
|
const bool init_rock = true );
|
|
|
|
#ifdef HAVE_OPM_GRID
|
|
/// Constructor to create a blackoil properties from an ECL deck.
|
|
///
|
|
/// The materialLawManager parameter represents the object from opm-material
|
|
/// which handles the creating and updating parameter objects for the capillary
|
|
/// pressure/relperm relations for each grid cell. This object is created
|
|
/// internally for the constructors below, but if it is already available
|
|
/// externally some performance can be gained by creating it only once.
|
|
///
|
|
/// \param deck The unprocessed ECL deck from opm-parser
|
|
/// \param eclState The processed ECL deck from opm-parser
|
|
/// \param materialLawManager The container for the material law parameter objects
|
|
/// \param grid The grid upon which the simulation is run on.
|
|
/// \param init_rock If true the rock properties (rock compressibility and
|
|
/// reference pressure) are read from the deck
|
|
BlackoilPropsAdFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
std::shared_ptr<MaterialLawManager> materialLawManager,
|
|
const Dune::CpGrid& grid,
|
|
const bool init_rock = true );
|
|
#endif
|
|
|
|
/// Constructor to create a blackoil properties from an ECL deck.
|
|
///
|
|
/// \param deck The unprocessed ECL deck from opm-parser
|
|
/// \param eclState The processed ECL deck from opm-parser
|
|
/// \param grid The grid upon which the simulation is run on.
|
|
/// \param init_rock If true the rock properties (rock compressibility and
|
|
/// reference pressure) are read from the deck
|
|
BlackoilPropsAdFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
const UnstructuredGrid& grid,
|
|
const bool init_rock = true );
|
|
|
|
#ifdef HAVE_OPM_GRID
|
|
/// Constructor to create a blackoil properties from an ECL deck.
|
|
///
|
|
/// \param deck The unprocessed ECL deck from opm-parser
|
|
/// \param eclState The processed ECL deck from opm-parser
|
|
/// \param grid The grid upon which the simulation is run on.
|
|
/// \param init_rock If true the rock properties (rock compressibility and
|
|
/// reference pressure) are read from the deck
|
|
BlackoilPropsAdFromDeck(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
const Dune::CpGrid& grid,
|
|
const bool init_rock = true );
|
|
#endif
|
|
|
|
/// \brief Constructor to create properties for a subgrid
|
|
///
|
|
/// This copies all properties that are not dependant on the
|
|
/// grid size from an existing properties object
|
|
/// and the number of cells. All properties that do not depend
|
|
/// on the grid dimension will be copied. For the rest will have
|
|
/// the correct size but the values will be undefined.
|
|
///
|
|
/// \param props The property object to copy from.
|
|
/// \param materialLawManager The container for the material law parameter objects.
|
|
/// Initialized only for the subgrid
|
|
/// \param number_of_cells The number of cells of the subgrid.
|
|
BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck& props,
|
|
std::shared_ptr<MaterialLawManager> materialLawManager,
|
|
const int number_of_cells);
|
|
|
|
|
|
////////////////////////////
|
|
// Rock interface //
|
|
////////////////////////////
|
|
|
|
/// \return D, the number of spatial dimensions.
|
|
int numDimensions() const;
|
|
|
|
/// \return N, the number of cells.
|
|
int numCells() const;
|
|
|
|
/// Return an array containing the PVT table index for each
|
|
/// grid cell
|
|
virtual const int* cellPvtRegionIndex() const
|
|
{ return &cellPvtRegionIdx_[0]; }
|
|
|
|
/// \return Array of N porosity values.
|
|
const double* porosity() const;
|
|
|
|
/// \return Array of ND^2 permeability values.
|
|
/// The D^2 permeability values for a cell are organized as a matrix,
|
|
/// which is symmetric (so ordering does not matter).
|
|
const double* permeability() const;
|
|
|
|
|
|
////////////////////////////
|
|
// Fluid interface //
|
|
////////////////////////////
|
|
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef std::vector<int> Cells;
|
|
|
|
/// \return Number of active phases (also the number of components).
|
|
int numPhases() const;
|
|
|
|
/// \return Object describing the active phases.
|
|
PhaseUsage phaseUsage() const;
|
|
|
|
// ------ Density ------
|
|
|
|
/// Densities of stock components at surface conditions.
|
|
/// \param[in] phaseIdx
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n density values for phase given by phaseIdx.
|
|
V surfaceDensity(const int phaseIdx , const Cells& cells) const;
|
|
|
|
|
|
// ------ Viscosity ------
|
|
|
|
/// Water viscosity.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] T Array of n temperature values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB muWat(const ADB& pw,
|
|
const ADB& T,
|
|
const Cells& cells) const;
|
|
|
|
/// Oil viscosity.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] T Array of n temperature values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB muOil(const ADB& po,
|
|
const ADB& T,
|
|
const ADB& rs,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas viscosity.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] T Array of n temperature values.
|
|
/// \param[in] rv Array of n vapor oil/gas ratios.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n viscosity values.
|
|
ADB muGas(const ADB& pg,
|
|
const ADB& T,
|
|
const ADB& rv,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
// ------ Formation volume factor (b) ------
|
|
|
|
/// Water formation volume factor.
|
|
/// \param[in] pw Array of n water pressure values.
|
|
/// \param[in] T Array of n temperature values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB bWat(const ADB& pw,
|
|
const ADB& T,
|
|
const Cells& cells) const;
|
|
|
|
/// Oil formation volume factor.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] T Array of n temperature values.
|
|
/// \param[in] rs Array of n gas solution factor values.
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB bOil(const ADB& po,
|
|
const ADB& T,
|
|
const ADB& rs,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
/// Gas formation volume factor.
|
|
/// \param[in] pg Array of n gas pressure values.
|
|
/// \param[in] T Array of n temperature values.
|
|
/// \param[in] rv Array of n vapor oil/gas ratio
|
|
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n formation volume factor values.
|
|
ADB bGas(const ADB& pg,
|
|
const ADB& T,
|
|
const ADB& rv,
|
|
const std::vector<PhasePresence>& cond,
|
|
const Cells& cells) const;
|
|
|
|
// ------ Rs bubble point curve ------
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V rsSat(const V& po,
|
|
const Cells& cells) const;
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
V rsSat(const V& po,
|
|
const V& so,
|
|
const Cells& cells) const;
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB rsSat(const ADB& po,
|
|
const Cells& cells) const;
|
|
|
|
/// Bubble point curve for Rs as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n bubble point values for Rs.
|
|
ADB rsSat(const ADB& po,
|
|
const ADB& so,
|
|
const Cells& cells) const;
|
|
|
|
// ------ Rv condensation curve ------
|
|
|
|
/// Condensation curve for Rv as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n condensation point values for Rv.
|
|
ADB rvSat(const ADB& po,
|
|
const Cells& cells) const;
|
|
|
|
/// Condensation curve for Rv as function of oil pressure.
|
|
/// \param[in] po Array of n oil pressure values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
|
|
/// \return Array of n condensation point values for Rv.
|
|
ADB rvSat(const ADB& po,
|
|
const ADB& so,
|
|
const Cells& cells) const;
|
|
|
|
// ------ Relative permeability ------
|
|
|
|
/// Relative permeabilities for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n relperm values,
|
|
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
|
|
std::vector<ADB> relperm(const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg,
|
|
const Cells& cells) const;
|
|
|
|
/// Capillary pressure for all phases.
|
|
/// \param[in] sw Array of n water saturation values.
|
|
/// \param[in] so Array of n oil saturation values.
|
|
/// \param[in] sg Array of n gas saturation values.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
/// \return An std::vector with 3 elements, each an array of n capillary pressure values,
|
|
/// containing the offsets for each p_g, p_o, p_w. The capillary pressure between
|
|
/// two arbitrary phases alpha and beta is then given as p_alpha - p_beta.
|
|
std::vector<ADB> capPress(const ADB& sw,
|
|
const ADB& so,
|
|
const ADB& sg,
|
|
const Cells& cells) const;
|
|
|
|
/// Saturation update for hysteresis behavior.
|
|
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
|
|
void updateSatHyst(const std::vector<double>& saturation,
|
|
const std::vector<int>& cells);
|
|
|
|
/// Set gas-oil hysteresis parameters
|
|
/// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...))
|
|
/// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...))
|
|
void setGasOilHystParams(const std::vector<double>& pcswmdc,
|
|
const std::vector<double>& krnswdc,
|
|
const std::vector<int>& cells);
|
|
|
|
/// Get gas-oil hysteresis parameters
|
|
/// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...))
|
|
/// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...))
|
|
void getGasOilHystParams(std::vector<double>& pcswmdc,
|
|
std::vector<double>& krnswdc,
|
|
const std::vector<int>& cells) const;
|
|
|
|
/// Set oil-water hysteresis parameters
|
|
/// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...))
|
|
/// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...))
|
|
void setOilWaterHystParams(const std::vector<double>& pcswmdc,
|
|
const std::vector<double>& krnswdc,
|
|
const std::vector<int>& cells);
|
|
|
|
/// Set oil-water hysteresis parameters
|
|
/// \param[in] pcswmdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::pcSwMdc(...))
|
|
/// \param[in] krnswdc Vector of hysteresis parameters (@see EclHysteresisTwoPhaseLawParams::krnSwMdc(...))
|
|
void getOilWaterHystParams(std::vector<double>& pcswmdc,
|
|
std::vector<double>& krnswdc,
|
|
const std::vector<int>& cells) const;
|
|
|
|
/// Update for max oil saturation.
|
|
/// \param[in] saturation Saturations for all phases
|
|
void updateSatOilMax(const std::vector<double>& saturation);
|
|
|
|
/// Returns the max oil saturation vector
|
|
const std::vector<double>& satOilMax() const;
|
|
|
|
/// Force set max oil saturation (used for restarting)
|
|
/// \param[in] max_sat Max oil saturations.
|
|
/// Note that this is a vector of *only* oil saturations (no other phases)
|
|
/// @see The similar function updateSatOilMax(const std::vector<double>& saturation)
|
|
/// @see satOilMax()
|
|
void setSatOilMax(const std::vector<double>& max_sat);
|
|
|
|
/// Returns the bubble point pressures
|
|
std::vector<double> bubblePointPressure(const Cells& cells,
|
|
const V& T,
|
|
const V& rs) const;
|
|
|
|
/// Returns the dew point pressures
|
|
std::vector<double> dewPointPressure(const Cells& cells,
|
|
const V& T,
|
|
const V& rv) const;
|
|
|
|
/// Set capillary pressure scaling according to pressure diff. and initial water saturation.
|
|
/// \param[in] saturation Array of n*numPhases saturation values.
|
|
/// \param[in] pc Array of n*numPhases capillary pressure values.
|
|
void setSwatInitScaling(const std::vector<double>& saturation,
|
|
const std::vector<double>& pc);
|
|
|
|
/// Obtain the scaled critical oil in gas saturation values.
|
|
/// \param[in] cells Array of cell indices.
|
|
/// \return Array of critical oil in gas saturaion values.
|
|
V scaledCriticalOilinGasSaturations(const Cells& cells) const;
|
|
|
|
/// Obtain the scaled critical gas saturation values.
|
|
/// \param[in] cells Array of cell indices.
|
|
/// \return Array of scaled critical gas saturaion values.
|
|
V scaledCriticalGasSaturations(const Cells& cells) const;
|
|
|
|
/// Direct access to lower-level water pvt props.
|
|
const WaterPvt& waterProps() const
|
|
{
|
|
return FluidSystem::waterPvt();
|
|
}
|
|
|
|
/// Direct access to lower-level oil pvt props.
|
|
const OilPvt& oilProps() const
|
|
{
|
|
return FluidSystem::oilPvt();
|
|
}
|
|
|
|
/// Direct access to lower-level gas pvt props.
|
|
const GasPvt& gasProps() const
|
|
{
|
|
return FluidSystem::gasPvt();
|
|
}
|
|
|
|
/// Direct access to lower-level saturation functions.
|
|
const MaterialLawManager& materialLaws() const
|
|
{
|
|
return *materialLawManager_;
|
|
}
|
|
|
|
// Direct access to pvt region indices.
|
|
const std::vector<int>& pvtRegions() const
|
|
{
|
|
return cellPvtRegionIdx_;
|
|
}
|
|
|
|
|
|
private:
|
|
/// Initializes the properties.
|
|
void init(const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclState,
|
|
std::shared_ptr<MaterialLawManager> materialLawManager,
|
|
int number_of_cells,
|
|
const int* global_cell,
|
|
const int* cart_dims,
|
|
const bool init_rock);
|
|
|
|
/// Correction to rs/rv according to kw VAPPARS
|
|
void applyVap(V& r,
|
|
const V& so,
|
|
const std::vector<int>& cells,
|
|
const double vap) const;
|
|
|
|
void applyVap(ADB& r,
|
|
const ADB& so,
|
|
const std::vector<int>& cells,
|
|
const double vap) const;
|
|
|
|
RockFromDeck rock_;
|
|
|
|
// This has to be a shared pointer as we must
|
|
// be able to make a copy of *this in the parallel case.
|
|
std::shared_ptr<MaterialLawManager> materialLawManager_;
|
|
std::shared_ptr<SaturationPropsFromDeck> satprops_;
|
|
|
|
PhaseUsage phase_usage_;
|
|
// bool has_vapoil_;
|
|
// bool has_disgas_;
|
|
|
|
// The PVT region which is to be used for each cell
|
|
std::vector<int> cellPvtRegionIdx_;
|
|
|
|
// VAPPARS
|
|
double vap1_;
|
|
double vap2_;
|
|
std::vector<double> satOilMax_;
|
|
double vap_satmax_guard_; //Threshold value to promote stability
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_BLACKOILPROPSADFROMDECK_HEADER_INCLUDED
|