opm-simulators/examples/problems/stokestestproblem.hh
Andreas Lauser 99304f9689 change the order of OPM_UNUSED and variable name
it seems like some compilers (GCC 4.9.2?) are picky about this and
require

```c++
TypeName VariableName __attribute__ ((__unused__))
```
2017-01-17 13:28:56 +01:00

323 lines
9.5 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::StokesTestProblem
*/
#ifndef EWOMS_STOKES_TEST_PROBLEM_HH
#define EWOMS_STOKES_TEST_PROBLEM_HH
#include <ewoms/models/stokes/stokesmodel.hh>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/fluidsystems/GasPhase.hpp>
#include <opm/common/Unused.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
template <class TypeTag>
class StokesTestProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(StokesTestProblem, INHERITS_FROM(StokesModel));
// Set the grid type
SET_TYPE_PROP(StokesTestProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(StokesTestProblem, Problem, Ewoms::StokesTestProblem<TypeTag>);
// Use the default fluid system of the Stokes model. It requires to
// specify a fluid, though.
SET_PROP(StokesTestProblem, Fluid)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::N2<Scalar> > type;
};
// Disable gravity
SET_BOOL_PROP(StokesTestProblem, EnableGravity, false);
// Enable constraints
SET_BOOL_PROP(StokesTestProblem, EnableConstraints, true);
// Default simulation end time [s]
SET_SCALAR_PROP(StokesTestProblem, EndTime, 10.0);
// Default initial time step size [s]
SET_SCALAR_PROP(StokesTestProblem, InitialTimeStepSize, 10.0);
// Default grid file to load
SET_STRING_PROP(StokesTestProblem, GridFile, "data/test_stokes.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup StokesModel
* \ingroup TestProblems
*
* \brief Stokes flow problem with nitrogen (\f$N_2\f$) flowing
* from the left to the right.
*
* The domain is sized 1m times 1m. The boundary conditions for the
* momentum balances are set to outflow on the right boundary and to
* no-flow at the top and bottom of the domain. For the mass balance
* equation, outflow boundary conditions are assumed on the right,
* free-flow on the left and no-flow at the top and bottom boundaries.
*/
template <class TypeTag>
class StokesTestProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Fluid) Fluid;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
enum {
// Number of equations and grid dimension
dimWorld = GridView::dimensionworld,
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
momentum0EqIdx = Indices::momentum0EqIdx,
// primary variable indices
velocity0Idx = Indices::velocity0Idx,
pressureIdx = Indices::pressureIdx
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
StokesTestProblem(Simulator& simulator)
: ParentType(simulator)
{ eps_ = 1e-6; }
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "stokestest"; }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \brief StokesProblem::temperature
*
* This problem assumes a constant temperature of 10 degrees Celsius.
*/
template <class Context>
Scalar temperature(const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ return 273.15 + 10; } // -> 10 deg C
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* For this problem, we use an out-flow boundary on the right,
* no-flow at the top and at the bottom and the left boundary gets
* a parabolic velocity profile via constraints.
*/
template <class Context>
void boundary(BoundaryRateVector& values, const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
Scalar y = pos[1] - this->boundingBoxMin()[1];
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
// parabolic velocity profile
const Scalar maxVelocity = 1.0;
Scalar a = -4 * maxVelocity / (height * height);
Scalar b = -a * height;
Scalar c = 0;
DimVector velocity(0.0);
velocity[0] = a * y * y + b * y + c;
if (onRightBoundary_(pos))
values.setOutFlow(context, spaceIdx, timeIdx);
else if (onLeftBoundary_(pos)) {
// left boundary is constraint!
values = 0.0;
}
else {
// top and bottom
values.setNoFlow(context, spaceIdx, timeIdx);
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
Scalar y = pos[1] - this->boundingBoxMin()[1];
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
// parabolic velocity profile on boundaries
const Scalar maxVelocity = 1.0;
Scalar a = -4 * maxVelocity / (height * height);
Scalar b = -a * height;
Scalar c = 0;
DimVector velocity(0.0);
velocity[0] = a * y * y + b * y + c;
for (unsigned axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
values[velocity0Idx + axisIdx] = velocity[axisIdx];
values[pressureIdx] = 1e5;
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all conserved quantities
* is 0 everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& context OPM_UNUSED,
unsigned spaceIdx OPM_UNUSED,
unsigned timeIdx OPM_UNUSED) const
{ rate = Scalar(0.0); }
/*!
* \copydoc FvBaseProblem::constraints
*
* For this problem, the left side of the domain gets a parabolic
* velocity profile using constraints.
*/
template <class Context>
void constraints(Constraints& constraints,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
constraints.setActive(true);
initial(constraints, context, spaceIdx, timeIdx);
}
}
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onBoundary_(const GlobalPosition& pos) const
{
return onLeftBoundary_(pos) || onRightBoundary_(pos)
|| onLowerBoundary_(pos) || onUpperBoundary_(pos);
}
Scalar eps_;
};
} // namespace Ewoms
#endif