opm-simulators/examples/problems/richardslensproblem.hh

409 lines
13 KiB
C++

/*
Copyright (C) 2008-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::RichardsLensProblem
*/
#ifndef EWOMS_RICHARDS_LENS_PROBLEM_HH
#define EWOMS_RICHARDS_LENS_PROBLEM_HH
#include <ewoms/models/richards/richardsmodel.hh>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/fluidsystems/LiquidPhase.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <dune/grid/io/file/dgfparser.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Ewoms {
template <class TypeTag>
class RichardsLensProblem;
}
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(RichardsLensProblem, Richards);
// Use 2d YaspGrid
SET_TYPE_PROP(RichardsLensProblem, Grid, Dune::YaspGrid<2>);
// Set the physical problem to be solved
SET_TYPE_PROP(RichardsLensProblem, Problem, Ewoms::RichardsLensProblem<TypeTag>);
// Set the wetting phase
SET_PROP(RichardsLensProblem, WettingFluid)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
};
// Set the material Law
SET_PROP(RichardsLensProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>
Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
public:
// define the material law parameterized by absolute saturations
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
};
// Enable gravitational acceleration
SET_BOOL_PROP(RichardsLensProblem, EnableGravity, true);
// Enable partial reassembly of the linearization
SET_BOOL_PROP(RichardsLensProblem, EnablePartialRelinearization, true);
// Enable re-use of the linearization of the last iteration of the
// previous for the first iteration of the current time step?
SET_BOOL_PROP(RichardsLensProblem, EnableLinearizationRecycling, true);
// Use central differences to approximate the Jacobian matrix
SET_INT_PROP(RichardsLensProblem, NumericDifferenceMethod, 0);
// Set the maximum number of newton iterations of a time step
SET_INT_PROP(RichardsLensProblem, NewtonMaxIterations, 28);
// Set the "desireable" number of newton iterations of a time step
SET_INT_PROP(RichardsLensProblem, NewtonTargetIterations, 18);
// Do not write the intermediate results of the newton method
SET_BOOL_PROP(RichardsLensProblem, NewtonWriteConvergence, false);
// The default for the end time of the simulation
SET_SCALAR_PROP(RichardsLensProblem, EndTime, 3000);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(RichardsLensProblem, InitialTimeStepSize, 100);
// The default DGF file to load
SET_STRING_PROP(RichardsLensProblem, GridFile, "./data/richardslens_24x16.dgf");
}} // namespace Opm, Properties
namespace Ewoms {
/*!
* \ingroup TestProblems
*
* \brief A water infiltration problem with a low-permeability lens
* embedded into a high-permeability domain.
*
* The domain is rectangular. The left and right boundaries are
* free-flow boundaries with fixed water pressure which corrosponds to
* a fixed saturation of \f$S_w = 0\f$ in the Richards model, the
* bottom boundary is closed. The top boundary is also closed except
* for an infiltration section, where water is infiltrating into an
* initially unsaturated porous medium. This problem is very similar
* the the \c LensProblem, with the main difference being that the domain
* is initally fully saturated by gas instead of water and water
* instead of a \c DNAPL infiltrates from the top.
*/
template <class TypeTag>
class RichardsLensProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum {
// copy some indices for convenience
pressureWIdx = Indices::pressureWIdx,
contiEqIdx = Indices::contiEqIdx,
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
numPhases = FluidSystem::numPhases,
// Grid and world dimension
dimWorld = GridView::dimensionworld
};
// get the material law from the property system
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
//! The parameters of the material law to be used
typedef typename MaterialLaw::Params MaterialLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
RichardsLensProblem(Simulator &simulator)
: ParentType(simulator)
, pnRef_(1e5)
{
eps_ = 3e-6;
pnRef_ = 1e5;
lensLowerLeft_[0] = 1.0;
lensLowerLeft_[1] = 2.0;
lensUpperRight_[0] = 4.0;
lensUpperRight_[1] = 3.0;
// parameters for the Van Genuchten law
// alpha and n
lensMaterialParams_.setVgAlpha(0.00045);
lensMaterialParams_.setVgN(7.3);
lensMaterialParams_.finalize();
outerMaterialParams_.setVgAlpha(0.0037);
outerMaterialParams_.setVgN(4.7);
outerMaterialParams_.finalize();
// parameters for the linear law
// minimum and maximum pressures
// lensMaterialParams_.setEntryPC(0);
// outerMaterialParams_.setEntryPC(0);
// lensMaterialParams_.setMaxPC(0);
// outerMaterialParams_.setMaxPC(0);
lensK_ = this->toDimMatrix_(1e-12);
outerK_ = this->toDimMatrix_(5e-12);
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "lens_richards"; }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
{ return 273.15 + 10; } // -> 10°C
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context,
int spaceIdx,
int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isInLens_(pos))
return lensK_;
return outerK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams &materialLawParams(const Context &context,
int spaceIdx,
int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (isInLens_(pos))
return lensMaterialParams_;
return outerMaterialParams_;
}
/*!
* \brief Return the reference pressure [Pa] of the wetting phase.
*
* \copydetails Doxygen::contextParams
*/
template <class Context>
Scalar referencePressure(const Context &context,
int spaceIdx,
int timeIdx) const
{ return pnRef_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values,
const Context &context,
int spaceIdx,
int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = 0.0;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fs);
fs.setPressure(wettingPhaseIdx, pnRef_ + pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]);
fs.setPressure(nonWettingPhaseIdx, pnRef_);
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector massRate(0.0);
// inflow of water
massRate[contiEqIdx] = -0.04; // kg / (m * s)
values.setMassRate(massRate);
}
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values,
const Context &context,
int spaceIdx,
int timeIdx) const
{
const auto &materialParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar Sw = 0.0;
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1.0 - Sw);
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, materialParams, fs);
values[pressureWIdx] = pnRef_ + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate,
const Context &context,
int spaceIdx,
int timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition &pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
}
bool isInLens_(const GlobalPosition &pos) const
{
for (int i = 0; i < dimWorld; ++i) {
if (pos[i] < lensLowerLeft_[i] || pos[i] > lensUpperRight_[i])
return false;
}
return true;
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix lensK_;
DimMatrix outerK_;
MaterialLawParams lensMaterialParams_;
MaterialLawParams outerMaterialParams_;
Scalar eps_;
Scalar pnRef_;
};
} // namespace Ewoms
#endif