opm-simulators/examples/problems/waterairproblem.hh

550 lines
18 KiB
C++

/*
Copyright (C) 2008-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::WaterAirProblem
*/
#ifndef EWOMS_WATER_AIR_PROBLEM_HH
#define EWOMS_WATER_AIR_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/heatconduction/Somerton.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/version.hh>
#include <sstream>
#include <string>
namespace Ewoms {
template <class TypeTag>
class WaterAirProblem;
}
namespace Opm {
namespace Properties {
NEW_TYPE_TAG(WaterAirBaseProblem);
// Set the grid type
SET_TYPE_PROP(WaterAirBaseProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(WaterAirBaseProblem, Problem, Ewoms::WaterAirProblem<TypeTag>);
// Set the material Law
SET_PROP(WaterAirBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedBrooksCorey<Traits> EffMaterialLaw;
public:
// define the material law parameterized by absolute saturations
// which uses the two-phase API
typedef Opm::EffToAbsLaw<EffMaterialLaw> type;
};
// Set the heat conduction law
SET_PROP(WaterAirBaseProblem, HeatConductionLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
// define the material law parameterized by absolute saturations
typedef Opm::Somerton<FluidSystem, Scalar> type;
};
// Set the fluid system. in this case, we use the one which describes
// air and water
SET_TYPE_PROP(WaterAirBaseProblem, FluidSystem,
Opm::FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>);
// Enable gravity
SET_BOOL_PROP(WaterAirBaseProblem, EnableGravity, true);
// Enable constraints
SET_BOOL_PROP(WaterAirBaseProblem, EnableConstraints, true);
// Use forward differences instead of central differences
SET_INT_PROP(WaterAirBaseProblem, NumericDifferenceMethod, +1);
// Write newton convergence
SET_BOOL_PROP(WaterAirBaseProblem, NewtonWriteConvergence, false);
// The default for the end time of the simulation
SET_SCALAR_PROP(WaterAirBaseProblem, EndTime, 5e3);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(WaterAirBaseProblem, InitialTimeStepSize, 250);
// The default DGF file to load
SET_STRING_PROP(WaterAirBaseProblem, GridFile, "./data/waterair.dgf");
} // namespace Properties
} // namespace Opm
namespace Ewoms {
/*!
* \ingroup TestProblems
* \brief Non-isothermal gas injection problem where a air
* is injected into a fully water saturated medium.
*
* During buoyancy driven upward migration, the gas passes a
* rectangular high temperature area. This decreases the temperature
* of the high-temperature area and accelerates gas infiltration due
* to the lower viscosity of the gas. (Be aware that the pressure of
* the gas is approximately constant within the lens, so the density
* of the gas is reduced. This more than off-sets the viscosity
* increase of the gas at constant density.)
*
* The domain is sized 40 m times 40 m. The rectangular area with
* increased temperature (380 K) starts at (20 m, 5 m) and ends at (30
* m, 35 m).
*
* For the mass conservation equation, no-flow boundary conditions are
* used on the top and on the bottom of the domain, while free-flow
* conditions apply on the left and the right boundary. Gas is
* injected at bottom from 15 m to 25 m at a rate of 0.001 kg/(s m^2)
* by means if a forced inflow boundary condition.
*
* At the free-flow boundaries, the initial condition for the bulk
* part of the domain is assumed, i. e. hydrostatic pressure, a gas
* saturation of zero and a geothermal temperature gradient of 0.03
* K/m.
*/
template <class TypeTag >
class WaterAirProblem
: public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
// copy some indices for convenience
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum {
numPhases = FluidSystem::numPhases,
// energy related indices
temperatureIdx = Indices::temperatureIdx,
energyEqIdx = Indices::energyEqIdx,
// component indices
H2OIdx = FluidSystem::H2OIdx,
AirIdx = FluidSystem::AirIdx,
// phase indices
liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
static const bool enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy);
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLaw) HeatConductionLaw;
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLawParams) HeatConductionLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
WaterAirProblem(Simulator &simulator)
: ParentType(simulator)
{
maxDepth_ = 1000.0; // [m]
eps_ = 1e-6;
FluidSystem::init(/*Tmin=*/275, /*Tmax=*/600, /*nT=*/100,
/*pmin=*/9.5e6, /*pmax=*/10.5e6, /*np=*/200);
layerBottom_ = 22.0;
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(1e-13);
coarseK_ = this->toDimMatrix_(1e-12);
// porosities
finePorosity_ = 0.3;
coarsePorosity_ = 0.3;
// residual saturations
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
// parameters for the Brooks-Corey law
fineMaterialParams_.setEntryPressure(1e4);
coarseMaterialParams_.setEntryPressure(1e4);
fineMaterialParams_.setLambda(2.0);
coarseMaterialParams_.setLambda(2.0);
fineMaterialParams_.finalize();
coarseMaterialParams_.finalize();
// parameters for the somerton law of heat conduction
computeHeatCondParams_(fineHeatCondParams_, finePorosity_);
computeHeatCondParams_(coarseHeatCondParams_, coarsePorosity_);
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "waterair_" << Model::name();
if (GET_PROP_VALUE(TypeTag, EnableEnergy))
oss << "_ni";
return oss.str();
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*
* In this problem, the upper part of the domain is sightly less
* permeable than the lower one.
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return finePorosity_;
else
return coarsePorosity_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context &context,
int spaceIdx,
int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineMaterialParams_;
else
return coarseMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
*
* In this case, we assume the rock-matrix to be granite.
*/
template <class Context>
Scalar heatCapacitySolid(const Context &context, int spaceIdx, int timeIdx) const
{
return
790 // specific heat capacity of granite [J / (kg K)]
* 2700; // density of granite [kg/m^3]
}
/*!
* \copydoc FvBaseMultiPhaseProblem::heatConductionParams
*/
template <class Context>
const HeatConductionLawParams&
heatConductionParams(const Context &context, int spaceIdx, int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineHeatCondParams_;
return coarseHeatCondParams_;
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* For this problem, we inject air at the inlet on the center of
* the lower domain boundary and use a no-flow condition on the
* top boundary and a and a free-flow condition on the left and
* right boundaries of the domain.
*/
template <class Context>
void boundary(BoundaryRateVector &values,
const Context &context,
int spaceIdx, int timeIdx) const
{
const auto &pos = context.cvCenter(spaceIdx, timeIdx);
assert(onLeftBoundary_(pos) ||
onLowerBoundary_(pos) ||
onRightBoundary_(pos) ||
onUpperBoundary_(pos));
if (onInlet_(pos)) {
RateVector massRate(0.0);
massRate[conti0EqIdx + AirIdx] = -1e-3; // [kg/(m^2 s)]
// impose an forced inflow boundary condition on the inlet
values.setMassRate(massRate);
if (enableEnergy) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
Scalar hl = fs.enthalpy(liquidPhaseIdx);
Scalar hg = fs.enthalpy(gasPhaseIdx);
values.setEnthalpyRate(values[conti0EqIdx + AirIdx] * hg +
values[conti0EqIdx + H2OIdx] * hl);
}
}
else if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else
// no flow on top and bottom
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*
* For this problem, we set the medium to be fully saturated by
* liquid water and assume hydrostatic pressure.
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, int spaceIdx, int timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
const auto &matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
}
/*!
* \copydoc FvBaseProblem::constraints
*
* In this problem, constraints are used to keep the temperature of the degrees of
* freedom which are closest to the inlet constant.
*/
template <class Context>
void constraints(Constraints &constraints,
const Context &context,
int spaceIdx, int timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onInlet_(pos)) {
constraints.setConstraint(temperatureIdx, energyEqIdx, 380);
}
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate,
const Context &context, int spaceIdx, int timeIdx) const
{ rate = 0; }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition &pos) const
{ return onLowerBoundary_(pos) && (15.0 < pos[0]) && (pos[0] < 25.0); }
bool inHighTemperatureRegion_(const GlobalPosition &pos) const
{ return (20 < pos[0]) && (pos[0] < 30) && (pos[1] < 30); }
template <class Context, class FluidState>
void initialFluidState_(FluidState &fs,
const Context &context,
int spaceIdx,
int timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
Scalar densityW = 1000.0;
fs.setPressure(liquidPhaseIdx, 1e5 + (maxDepth_ - pos[1])*densityW*9.81);
fs.setSaturation(liquidPhaseIdx, 1.0);
fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
fs.setMoleFraction(liquidPhaseIdx, AirIdx, 0.0);
if (inHighTemperatureRegion_(pos))
fs.setTemperature(380);
else
fs.setTemperature(283.0 + (maxDepth_ - pos[1])*0.03);
// set the gas saturation and pressure
fs.setSaturation(gasPhaseIdx, 0);
Scalar pc[numPhases];
const auto &matParams = materialLawParams(context, spaceIdx, timeIdx);
MaterialLaw::capillaryPressures(pc, matParams, fs);
fs.setPressure(gasPhaseIdx, fs.pressure(liquidPhaseIdx) + (pc[gasPhaseIdx] - pc[liquidPhaseIdx]));
typename FluidSystem::ParameterCache paramCache;
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
CFRP::solve(fs, paramCache, liquidPhaseIdx, /*setViscosity=*/false, /*setEnthalpy=*/true);
}
void computeHeatCondParams_(HeatConductionLawParams &params, Scalar poro)
{
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setTemperature(293.15);
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setPressure(phaseIdx, 1.0135e5);
}
typename FluidSystem::ParameterCache paramCache;
paramCache.updateAll(fs);
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar lambdaSaturated;
if (FluidSystem::isLiquid(phaseIdx)) {
Scalar lambdaFluid =
FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
lambdaSaturated = std::pow(lambdaGranite, (1-poro)) + std::pow(lambdaFluid, poro);
}
else
lambdaSaturated = std::pow(lambdaGranite, (1-poro));
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
if (!FluidSystem::isLiquid(phaseIdx))
params.setVacuumLambda(lambdaSaturated);
}
}
bool isFineMaterial_(const GlobalPosition &pos) const
{ return pos[dim-1] > layerBottom_; }
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar layerBottom_;
Scalar finePorosity_;
Scalar coarsePorosity_;
MaterialLawParams fineMaterialParams_;
MaterialLawParams coarseMaterialParams_;
HeatConductionLawParams fineHeatCondParams_;
HeatConductionLawParams coarseHeatCondParams_;
Scalar maxDepth_;
Scalar eps_;
};
} // namespace Ewoms
#endif