mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-17 19:33:00 -06:00
633 lines
25 KiB
C++
633 lines
25 KiB
C++
/*
|
|
Copyright 2016 IRIS AS
|
|
Copyright 2019, 2020 Equinor ASA
|
|
Copyright 2020 SINTEF Digital, Mathematics and Cybernetics
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_ISTLSOLVER_HEADER_INCLUDED
|
|
#define OPM_ISTLSOLVER_HEADER_INCLUDED
|
|
|
|
#include <dune/istl/owneroverlapcopy.hh>
|
|
#include <dune/istl/solver.hh>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/common/TimingMacros.hpp>
|
|
|
|
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
|
#include <opm/models/common/multiphasebaseproperties.hh>
|
|
#include <opm/models/utils/parametersystem.hh>
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
#include <opm/simulators/flow/BlackoilModelParameters.hpp>
|
|
#include <opm/simulators/flow/FlowBaseVanguard.hpp>
|
|
#include <opm/simulators/linalg/ExtractParallelGridInformationToISTL.hpp>
|
|
#include <opm/simulators/linalg/FlowLinearSolverParameters.hpp>
|
|
#include <opm/simulators/linalg/matrixblock.hh>
|
|
#include <opm/simulators/linalg/istlsparsematrixadapter.hh>
|
|
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
|
|
#include <opm/simulators/linalg/WellOperators.hpp>
|
|
#include <opm/simulators/linalg/WriteSystemMatrixHelper.hpp>
|
|
#include <opm/simulators/linalg/findOverlapRowsAndColumns.hpp>
|
|
#include <opm/simulators/linalg/getQuasiImpesWeights.hpp>
|
|
#include <opm/simulators/linalg/setupPropertyTree.hpp>
|
|
|
|
#include <any>
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
struct FlowIstlSolver {
|
|
using InheritsFrom = std::tuple<FlowIstlSolverParams>;
|
|
};
|
|
}
|
|
|
|
template <class TypeTag, class MyTypeTag>
|
|
struct WellModel;
|
|
|
|
//! Set the type of a global jacobian matrix for linear solvers that are based on
|
|
//! dune-istl.
|
|
template<class TypeTag>
|
|
struct SparseMatrixAdapter<TypeTag, TTag::FlowIstlSolver>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
using Block = MatrixBlock<Scalar, numEq, numEq>;
|
|
|
|
public:
|
|
using type = typename Linear::IstlSparseMatrixAdapter<Block>;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
namespace detail
|
|
{
|
|
|
|
template<class Matrix, class Vector, class Comm>
|
|
struct FlexibleSolverInfo
|
|
{
|
|
using AbstractSolverType = Dune::InverseOperator<Vector, Vector>;
|
|
using AbstractOperatorType = Dune::AssembledLinearOperator<Matrix, Vector, Vector>;
|
|
using AbstractPreconditionerType = Dune::PreconditionerWithUpdate<Vector, Vector>;
|
|
|
|
void create(const Matrix& matrix,
|
|
bool parallel,
|
|
const PropertyTree& prm,
|
|
std::size_t pressureIndex,
|
|
std::function<Vector()> weightCalculator,
|
|
const bool forceSerial,
|
|
Comm& comm);
|
|
|
|
std::unique_ptr<AbstractSolverType> solver_;
|
|
std::unique_ptr<AbstractOperatorType> op_;
|
|
std::unique_ptr<LinearOperatorExtra<Vector,Vector>> wellOperator_;
|
|
AbstractPreconditionerType* pre_ = nullptr;
|
|
std::size_t interiorCellNum_ = 0;
|
|
};
|
|
|
|
|
|
#ifdef HAVE_MPI
|
|
/// Copy values in parallel.
|
|
void copyParValues(std::any& parallelInformation, std::size_t size,
|
|
Dune::OwnerOverlapCopyCommunication<int,int>& comm);
|
|
#endif
|
|
|
|
/// Zero out off-diagonal blocks on rows corresponding to overlap cells
|
|
/// Diagonal blocks on ovelap rows are set to diag(1.0).
|
|
template<class Matrix>
|
|
void makeOverlapRowsInvalid(Matrix& matrix,
|
|
const std::vector<int>& overlapRows);
|
|
|
|
/// Create sparsity pattern for block-Jacobi matrix based on partitioning of grid.
|
|
/// Do not initialize the values, that is done in copyMatToBlockJac()
|
|
template<class Matrix, class Grid>
|
|
std::unique_ptr<Matrix> blockJacobiAdjacency(const Grid& grid,
|
|
const std::vector<int>& cell_part,
|
|
std::size_t nonzeroes,
|
|
const std::vector<std::set<int>>& wellConnectionsGraph);
|
|
}
|
|
|
|
/// This class solves the fully implicit black-oil system by
|
|
/// solving the reduced system (after eliminating well variables)
|
|
/// as a block-structured matrix (one block for all cell variables) for a fixed
|
|
/// number of cell variables np .
|
|
template <class TypeTag>
|
|
class ISTLSolver
|
|
{
|
|
protected:
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
|
|
using Vector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using WellModel = GetPropType<TypeTag, Properties::WellModel>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Matrix = typename SparseMatrixAdapter::IstlMatrix;
|
|
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using AbstractSolverType = Dune::InverseOperator<Vector, Vector>;
|
|
using AbstractOperatorType = Dune::AssembledLinearOperator<Matrix, Vector, Vector>;
|
|
using AbstractPreconditionerType = Dune::PreconditionerWithUpdate<Vector, Vector>;
|
|
using WellModelOperator = WellModelAsLinearOperator<WellModel, Vector, Vector>;
|
|
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
|
|
constexpr static std::size_t pressureIndex = GetPropType<TypeTag, Properties::Indices>::pressureSwitchIdx;
|
|
|
|
#if HAVE_MPI
|
|
using CommunicationType = Dune::OwnerOverlapCopyCommunication<int,int>;
|
|
#else
|
|
using CommunicationType = Dune::CollectiveCommunication<int>;
|
|
#endif
|
|
|
|
public:
|
|
using AssembledLinearOperatorType = Dune::AssembledLinearOperator< Matrix, Vector, Vector >;
|
|
|
|
static void registerParameters()
|
|
{
|
|
FlowLinearSolverParameters::registerParameters<TypeTag>();
|
|
}
|
|
|
|
/// Construct a system solver.
|
|
/// \param[in] simulator The opm-models simulator object
|
|
/// \param[in] parameters Explicit parameters for solver setup, do not
|
|
/// read them from command line parameters.
|
|
/// \param[in] forceSerial If true, will set up a serial linear solver only,
|
|
/// local to the current rank, instead of creating a
|
|
/// parallel (MPI distributed) linear solver.
|
|
ISTLSolver(const Simulator& simulator,
|
|
const FlowLinearSolverParameters& parameters,
|
|
bool forceSerial = false)
|
|
: simulator_(simulator),
|
|
iterations_( 0 ),
|
|
converged_(false),
|
|
matrix_(nullptr),
|
|
parameters_{parameters},
|
|
forceSerial_(forceSerial)
|
|
{
|
|
initialize();
|
|
}
|
|
|
|
/// Construct a system solver.
|
|
/// \param[in] simulator The opm-models simulator object
|
|
explicit ISTLSolver(const Simulator& simulator)
|
|
: simulator_(simulator),
|
|
iterations_( 0 ),
|
|
solveCount_(0),
|
|
converged_(false),
|
|
matrix_(nullptr)
|
|
{
|
|
parameters_.resize(1);
|
|
parameters_[0].template init<TypeTag>(simulator_.vanguard().eclState().getSimulationConfig().useCPR());
|
|
initialize();
|
|
}
|
|
|
|
void initialize()
|
|
{
|
|
OPM_TIMEBLOCK(IstlSolver);
|
|
|
|
if (parameters_[0].linsolver_ == "hybrid") {
|
|
// Experimental hybrid configuration.
|
|
// When chosen, will set up two solvers, one with CPRW
|
|
// and the other with ILU0 preconditioner. More general
|
|
// options may be added later.
|
|
prm_.clear();
|
|
parameters_.clear();
|
|
{
|
|
FlowLinearSolverParameters para;
|
|
para.init<TypeTag>(false);
|
|
para.linsolver_ = "cprw";
|
|
parameters_.push_back(para);
|
|
prm_.push_back(setupPropertyTree(parameters_[0],
|
|
EWOMS_PARAM_IS_SET(TypeTag, int, LinearSolverMaxIter),
|
|
EWOMS_PARAM_IS_SET(TypeTag, double, LinearSolverReduction)));
|
|
}
|
|
{
|
|
FlowLinearSolverParameters para;
|
|
para.init<TypeTag>(false);
|
|
para.linsolver_ = "ilu0";
|
|
parameters_.push_back(para);
|
|
prm_.push_back(setupPropertyTree(parameters_[1],
|
|
EWOMS_PARAM_IS_SET(TypeTag, int, LinearSolverMaxIter),
|
|
EWOMS_PARAM_IS_SET(TypeTag, double, LinearSolverReduction)));
|
|
}
|
|
// ------------
|
|
} else {
|
|
// Do a normal linear solver setup.
|
|
assert(parameters_.size() == 1);
|
|
assert(prm_.empty());
|
|
prm_.push_back(setupPropertyTree(parameters_[0],
|
|
EWOMS_PARAM_IS_SET(TypeTag, int, LinearSolverMaxIter),
|
|
EWOMS_PARAM_IS_SET(TypeTag, double, LinearSolverReduction)));
|
|
}
|
|
flexibleSolver_.resize(prm_.size());
|
|
|
|
const bool on_io_rank = (simulator_.gridView().comm().rank() == 0);
|
|
#if HAVE_MPI
|
|
comm_.reset( new CommunicationType( simulator_.vanguard().grid().comm() ) );
|
|
#endif
|
|
extractParallelGridInformationToISTL(simulator_.vanguard().grid(), parallelInformation_);
|
|
|
|
// For some reason simulator_.model().elementMapper() is not initialized at this stage
|
|
//const auto& elemMapper = simulator_.model().elementMapper(); //does not work.
|
|
// Set it up manually
|
|
ElementMapper elemMapper(simulator_.vanguard().gridView(), Dune::mcmgElementLayout());
|
|
detail::findOverlapAndInterior(simulator_.vanguard().grid(), elemMapper, overlapRows_, interiorRows_);
|
|
useWellConn_ = EWOMS_GET_PARAM(TypeTag, bool, MatrixAddWellContributions);
|
|
const bool ownersFirst = EWOMS_GET_PARAM(TypeTag, bool, OwnerCellsFirst);
|
|
if (!ownersFirst) {
|
|
const std::string msg = "The linear solver no longer supports --owner-cells-first=false.";
|
|
if (on_io_rank) {
|
|
OpmLog::error(msg);
|
|
}
|
|
OPM_THROW_NOLOG(std::runtime_error, msg);
|
|
}
|
|
|
|
const int interiorCellNum_ = detail::numMatrixRowsToUseInSolver(simulator_.vanguard().grid(), true);
|
|
for (auto& f : flexibleSolver_) {
|
|
f.interiorCellNum_ = interiorCellNum_;
|
|
}
|
|
|
|
#if HAVE_MPI
|
|
if (isParallel()) {
|
|
const std::size_t size = simulator_.vanguard().grid().leafGridView().size(0);
|
|
detail::copyParValues(parallelInformation_, size, *comm_);
|
|
}
|
|
#endif
|
|
|
|
// Print parameters to PRT/DBG logs.
|
|
if (on_io_rank && parameters_[activeSolverNum_].linear_solver_print_json_definition_) {
|
|
std::ostringstream os;
|
|
os << "Property tree for linear solvers:\n";
|
|
for (std::size_t i = 0; i<prm_.size(); i++) {
|
|
prm_[i].write_json(os, true);
|
|
}
|
|
OpmLog::note(os.str());
|
|
}
|
|
}
|
|
|
|
// nothing to clean here
|
|
void eraseMatrix()
|
|
{
|
|
}
|
|
|
|
void setActiveSolver(const int num)
|
|
{
|
|
if (num > static_cast<int>(prm_.size()) - 1) {
|
|
OPM_THROW(std::logic_error, "Solver number " + std::to_string(num) + " not available.");
|
|
}
|
|
activeSolverNum_ = num;
|
|
if (simulator_.gridView().comm().rank() == 0) {
|
|
OpmLog::debug("Active solver = " + std::to_string(activeSolverNum_)
|
|
+ " (" + parameters_[activeSolverNum_].linsolver_ + ")");
|
|
}
|
|
}
|
|
|
|
int numAvailableSolvers()
|
|
{
|
|
return flexibleSolver_.size();
|
|
}
|
|
|
|
void initPrepare(const Matrix& M, Vector& b)
|
|
{
|
|
const bool firstcall = (matrix_ == nullptr);
|
|
|
|
// update matrix entries for solvers.
|
|
if (firstcall) {
|
|
// model will not change the matrix object. Hence simply store a pointer
|
|
// to the original one with a deleter that does nothing.
|
|
// Outch! We need to be able to scale the linear system! Hence const_cast
|
|
matrix_ = const_cast<Matrix*>(&M);
|
|
|
|
useWellConn_ = EWOMS_GET_PARAM(TypeTag, bool, MatrixAddWellContributions);
|
|
// setup sparsity pattern for jacobi matrix for preconditioner (only used for openclSolver)
|
|
} else {
|
|
// Pointers should not change
|
|
if ( &M != matrix_ ) {
|
|
OPM_THROW(std::logic_error,
|
|
"Matrix objects are expected to be reused when reassembling!");
|
|
}
|
|
}
|
|
rhs_ = &b;
|
|
|
|
// TODO: check all solvers, not just one.
|
|
if (isParallel() && prm_[activeSolverNum_].template get<std::string>("preconditioner.type") != "ParOverILU0") {
|
|
detail::makeOverlapRowsInvalid(getMatrix(), overlapRows_);
|
|
}
|
|
}
|
|
|
|
void prepare(const SparseMatrixAdapter& M, Vector& b)
|
|
{
|
|
prepare(M.istlMatrix(), b);
|
|
}
|
|
|
|
void prepare(const Matrix& M, Vector& b)
|
|
{
|
|
OPM_TIMEBLOCK(istlSolverPrepare);
|
|
|
|
initPrepare(M,b);
|
|
|
|
prepareFlexibleSolver();
|
|
}
|
|
|
|
|
|
void setResidual(Vector& /* b */)
|
|
{
|
|
// rhs_ = &b; // Must be handled in prepare() instead.
|
|
}
|
|
|
|
void getResidual(Vector& b) const
|
|
{
|
|
b = *rhs_;
|
|
}
|
|
|
|
void setMatrix(const SparseMatrixAdapter& /* M */)
|
|
{
|
|
// matrix_ = &M.istlMatrix(); // Must be handled in prepare() instead.
|
|
}
|
|
|
|
int getSolveCount() const {
|
|
return solveCount_;
|
|
}
|
|
|
|
void resetSolveCount() {
|
|
solveCount_ = 0;
|
|
}
|
|
|
|
bool solve(Vector& x)
|
|
{
|
|
OPM_TIMEBLOCK(istlSolverSolve);
|
|
++solveCount_;
|
|
// Write linear system if asked for.
|
|
const int verbosity = prm_[activeSolverNum_].get("verbosity", 0);
|
|
const bool write_matrix = verbosity > 10;
|
|
if (write_matrix) {
|
|
Helper::writeSystem(simulator_, //simulator is only used to get names
|
|
getMatrix(),
|
|
*rhs_,
|
|
comm_.get());
|
|
}
|
|
|
|
// Solve system.
|
|
Dune::InverseOperatorResult result;
|
|
{
|
|
OPM_TIMEBLOCK(flexibleSolverApply);
|
|
assert(flexibleSolver_[activeSolverNum_].solver_);
|
|
flexibleSolver_[activeSolverNum_].solver_->apply(x, *rhs_, result);
|
|
}
|
|
|
|
// Check convergence, iterations etc.
|
|
checkConvergence(result);
|
|
|
|
return converged_;
|
|
}
|
|
|
|
|
|
/// Solve the system of linear equations Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] residual residual object containing A and b.
|
|
/// \return the solution x
|
|
|
|
/// \copydoc NewtonIterationBlackoilInterface::iterations
|
|
int iterations () const { return iterations_; }
|
|
|
|
/// \copydoc NewtonIterationBlackoilInterface::parallelInformation
|
|
const std::any& parallelInformation() const { return parallelInformation_; }
|
|
|
|
const CommunicationType* comm() const { return comm_.get(); }
|
|
|
|
protected:
|
|
#if HAVE_MPI
|
|
using Comm = Dune::OwnerOverlapCopyCommunication<int, int>;
|
|
#endif
|
|
|
|
void checkConvergence( const Dune::InverseOperatorResult& result ) const
|
|
{
|
|
// store number of iterations
|
|
iterations_ = result.iterations;
|
|
converged_ = result.converged;
|
|
if(!converged_){
|
|
if(result.reduction < parameters_[activeSolverNum_].relaxed_linear_solver_reduction_){
|
|
std::stringstream ss;
|
|
ss<< "Full linear solver tolerance not achieved. The reduction is:" << result.reduction
|
|
<< " after " << result.iterations << " iterations ";
|
|
OpmLog::warning(ss.str());
|
|
converged_ = true;
|
|
}
|
|
}
|
|
// Check for failure of linear solver.
|
|
if (!parameters_[activeSolverNum_].ignoreConvergenceFailure_ && !converged_) {
|
|
const std::string msg("Convergence failure for linear solver.");
|
|
OPM_THROW_NOLOG(NumericalProblem, msg);
|
|
}
|
|
}
|
|
protected:
|
|
|
|
bool isParallel() const {
|
|
#if HAVE_MPI
|
|
return !forceSerial_ && comm_->communicator().size() > 1;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void prepareFlexibleSolver()
|
|
{
|
|
OPM_TIMEBLOCK(flexibleSolverPrepare);
|
|
if (shouldCreateSolver()) {
|
|
if (!useWellConn_) {
|
|
auto wellOp = std::make_unique<WellModelOperator>(simulator_.problem().wellModel());
|
|
flexibleSolver_[activeSolverNum_].wellOperator_ = std::move(wellOp);
|
|
}
|
|
std::function<Vector()> weightCalculator = this->getWeightsCalculator(prm_[activeSolverNum_], getMatrix(), pressureIndex);
|
|
OPM_TIMEBLOCK(flexibleSolverCreate);
|
|
flexibleSolver_[activeSolverNum_].create(getMatrix(),
|
|
isParallel(),
|
|
prm_[activeSolverNum_],
|
|
pressureIndex,
|
|
weightCalculator,
|
|
forceSerial_,
|
|
*comm_);
|
|
}
|
|
else
|
|
{
|
|
OPM_TIMEBLOCK(flexibleSolverUpdate);
|
|
flexibleSolver_[activeSolverNum_].pre_->update();
|
|
}
|
|
}
|
|
|
|
|
|
/// Return true if we should (re)create the whole solver,
|
|
/// instead of just calling update() on the preconditioner.
|
|
bool shouldCreateSolver() const
|
|
{
|
|
// Decide if we should recreate the solver or just do
|
|
// a minimal preconditioner update.
|
|
if (flexibleSolver_.empty()) {
|
|
return true;
|
|
}
|
|
if (!flexibleSolver_[activeSolverNum_].solver_) {
|
|
return true;
|
|
}
|
|
if (this->parameters_[activeSolverNum_].cpr_reuse_setup_ == 0) {
|
|
// Always recreate solver.
|
|
return true;
|
|
}
|
|
if (this->parameters_[activeSolverNum_].cpr_reuse_setup_ == 1) {
|
|
// Recreate solver on the first iteration of every timestep.
|
|
const int newton_iteration = this->simulator_.model().newtonMethod().numIterations();
|
|
return newton_iteration == 0;
|
|
}
|
|
if (this->parameters_[activeSolverNum_].cpr_reuse_setup_ == 2) {
|
|
// Recreate solver if the last solve used more than 10 iterations.
|
|
return this->iterations() > 10;
|
|
}
|
|
if (this->parameters_[activeSolverNum_].cpr_reuse_setup_ == 3) {
|
|
// Recreate solver if the last solve used more than 10 iterations.
|
|
return false;
|
|
}
|
|
if (this->parameters_[activeSolverNum_].cpr_reuse_setup_ == 4) {
|
|
// Recreate solver every 'step' solve calls.
|
|
const int step = this->parameters_[activeSolverNum_].cpr_reuse_interval_;
|
|
const bool create = ((solveCount_ % step) == 0);
|
|
return create;
|
|
}
|
|
|
|
// If here, we have an invalid parameter.
|
|
const bool on_io_rank = (simulator_.gridView().comm().rank() == 0);
|
|
std::string msg = "Invalid value: " + std::to_string(this->parameters_[activeSolverNum_].cpr_reuse_setup_)
|
|
+ " for --cpr-reuse-setup parameter, run with --help to see allowed values.";
|
|
if (on_io_rank) {
|
|
OpmLog::error(msg);
|
|
}
|
|
throw std::runtime_error(msg);
|
|
|
|
// Never reached.
|
|
return false;
|
|
}
|
|
|
|
|
|
// Weights to make approximate pressure equations.
|
|
// Calculated from the storage terms (only) of the
|
|
// conservation equations, ignoring all other terms.
|
|
std::function<Vector()> getWeightsCalculator(const PropertyTree& prm,
|
|
const Matrix& matrix,
|
|
std::size_t pressIndex) const
|
|
{
|
|
std::function<Vector()> weightsCalculator;
|
|
|
|
using namespace std::string_literals;
|
|
|
|
auto preconditionerType = prm.get("preconditioner.type"s, "cpr"s);
|
|
if (preconditionerType == "cpr" || preconditionerType == "cprt"
|
|
|| preconditionerType == "cprw" || preconditionerType == "cprwt") {
|
|
const bool transpose = preconditionerType == "cprt" || preconditionerType == "cprwt";
|
|
const auto weightsType = prm.get("preconditioner.weight_type"s, "quasiimpes"s);
|
|
if (weightsType == "quasiimpes") {
|
|
// weights will be created as default in the solver
|
|
// assignment p = pressureIndex prevent compiler warning about
|
|
// capturing variable with non-automatic storage duration
|
|
weightsCalculator = [matrix, transpose, pressIndex]() {
|
|
return Amg::getQuasiImpesWeights<Matrix, Vector>(matrix,
|
|
pressIndex,
|
|
transpose);
|
|
};
|
|
} else if ( weightsType == "trueimpes" ) {
|
|
weightsCalculator =
|
|
[this, pressIndex]
|
|
{
|
|
Vector weights(rhs_->size());
|
|
ElementContext elemCtx(simulator_);
|
|
Amg::getTrueImpesWeights(pressIndex, weights,
|
|
simulator_.vanguard().gridView(),
|
|
elemCtx, simulator_.model(),
|
|
ThreadManager::threadId());
|
|
return weights;
|
|
};
|
|
} else if (weightsType == "trueimpesanalytic" ) {
|
|
weightsCalculator =
|
|
[this, pressIndex]
|
|
{
|
|
Vector weights(rhs_->size());
|
|
ElementContext elemCtx(simulator_);
|
|
Amg::getTrueImpesWeightsAnalytic(pressIndex, weights,
|
|
simulator_.vanguard().gridView(),
|
|
elemCtx, simulator_.model(),
|
|
ThreadManager::threadId());
|
|
return weights;
|
|
};
|
|
} else {
|
|
OPM_THROW(std::invalid_argument,
|
|
"Weights type " + weightsType +
|
|
"not implemented for cpr."
|
|
" Please use quasiimpes, trueimpes or trueimpesanalytic.");
|
|
}
|
|
}
|
|
return weightsCalculator;
|
|
}
|
|
|
|
|
|
Matrix& getMatrix()
|
|
{
|
|
return *matrix_;
|
|
}
|
|
|
|
const Matrix& getMatrix() const
|
|
{
|
|
return *matrix_;
|
|
}
|
|
|
|
const Simulator& simulator_;
|
|
mutable int iterations_;
|
|
mutable int solveCount_;
|
|
mutable bool converged_;
|
|
std::any parallelInformation_;
|
|
|
|
// non-const to be able to scale the linear system
|
|
Matrix* matrix_;
|
|
Vector *rhs_;
|
|
|
|
int activeSolverNum_ = 0;
|
|
std::vector<detail::FlexibleSolverInfo<Matrix,Vector,CommunicationType>> flexibleSolver_;
|
|
std::vector<int> overlapRows_;
|
|
std::vector<int> interiorRows_;
|
|
|
|
bool useWellConn_;
|
|
|
|
std::vector<FlowLinearSolverParameters> parameters_;
|
|
bool forceSerial_ = false;
|
|
std::vector<PropertyTree> prm_;
|
|
|
|
std::shared_ptr< CommunicationType > comm_;
|
|
}; // end ISTLSolver
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_ISTLSOLVER_HEADER_INCLUDED
|