opm-simulators/opm/simulators/linalg/getQuasiImpesWeights.hpp

217 lines
9.6 KiB
C++

/*
Copyright 2019 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_GET_QUASI_IMPES_WEIGHTS_HEADER_INCLUDED
#define OPM_GET_QUASI_IMPES_WEIGHTS_HEADER_INCLUDED
#include <dune/common/fvector.hh>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <algorithm>
#include <cmath>
namespace Opm
{
namespace Details
{
template <class DenseMatrix>
DenseMatrix transposeDenseMatrix(const DenseMatrix& M)
{
DenseMatrix tmp;
for (int i = 0; i < M.rows; ++i)
for (int j = 0; j < M.cols; ++j)
tmp[j][i] = M[i][j];
return tmp;
}
} // namespace Details
namespace Amg
{
template <class Matrix, class Vector>
void getQuasiImpesWeights(const Matrix& matrix, const int pressureVarIndex, const bool transpose, Vector& weights)
{
using VectorBlockType = typename Vector::block_type;
using MatrixBlockType = typename Matrix::block_type;
const Matrix& A = matrix;
VectorBlockType rhs(0.0);
rhs[pressureVarIndex] = 1.0;
const auto endi = A.end();
for (auto i = A.begin(); i != endi; ++i) {
const auto endj = (*i).end();
MatrixBlockType diag_block(0.0);
for (auto j = (*i).begin(); j != endj; ++j) {
if (i.index() == j.index()) {
diag_block = (*j);
break;
}
}
VectorBlockType bweights;
if (transpose) {
diag_block.solve(bweights, rhs);
} else {
auto diag_block_transpose = Details::transposeDenseMatrix(diag_block);
diag_block_transpose.solve(bweights, rhs);
}
double abs_max = *std::max_element(
bweights.begin(), bweights.end(), [](double a, double b) { return std::fabs(a) < std::fabs(b); });
bweights /= std::fabs(abs_max);
weights[i.index()] = bweights;
}
// return weights;
}
template <class Matrix, class Vector>
Vector getQuasiImpesWeights(const Matrix& matrix, const int pressureVarIndex, const bool transpose)
{
Vector weights(matrix.N());
getQuasiImpesWeights(matrix, pressureVarIndex, transpose, weights);
return weights;
}
template<class Vector, class GridView, class ElementContext, class Model>
void getTrueImpesWeights(int pressureVarIndex, Vector& weights, const GridView& gridView,
ElementContext& elemCtx, const Model& model, std::size_t threadId)
{
using VectorBlockType = typename Vector::block_type;
using Matrix = typename std::decay_t<decltype(model.linearizer().jacobian())>;
using MatrixBlockType = typename Matrix::MatrixBlock;
constexpr int numEq = VectorBlockType::size();
using Evaluation = typename std::decay_t<decltype(model.localLinearizer(threadId).localResidual().residual(0))>
::block_type;
VectorBlockType rhs(0.0);
rhs[pressureVarIndex] = 1.0;
int index = 0;
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView)) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
Dune::FieldVector<Evaluation, numEq> storage;
model.localLinearizer(threadId).localResidual().computeStorage(storage,elemCtx,/*spaceIdx=*/0, /*timeIdx=*/0);
auto extrusionFactor = elemCtx.intensiveQuantities(0, /*timeIdx=*/0).extrusionFactor();
auto scvVolume = elemCtx.stencil(/*timeIdx=*/0).subControlVolume(0).volume() * extrusionFactor;
auto storage_scale = scvVolume / elemCtx.simulator().timeStepSize();
MatrixBlockType block;
double pressure_scale = 50e5;
for (int ii = 0; ii < numEq; ++ii) {
for (int jj = 0; jj < numEq; ++jj) {
block[ii][jj] = storage[ii].derivative(jj)/storage_scale;
if (jj == pressureVarIndex) {
block[ii][jj] *= pressure_scale;
}
}
}
VectorBlockType bweights;
MatrixBlockType block_transpose = Details::transposeDenseMatrix(block);
block_transpose.solve(bweights, rhs);
double abs_max = *std::max_element(
bweights.begin(), bweights.end(), [](double a, double b) { return std::fabs(a) < std::fabs(b); });
// probably a scaling which could give approximately total compressibility would be better
bweights /= std::fabs(abs_max); // given normal densities this scales weights to about 1.
weights[index] = bweights;
++index;
}
OPM_END_PARALLEL_TRY_CATCH("getTrueImpesWeights() failed: ", elemCtx.simulator().vanguard().grid().comm());
}
template <class Vector, class GridView, class ElementContext, class Model>
void getTrueImpesWeightsAnalytic(int /*pressureVarIndex*/,
Vector& weights,
const GridView& gridView,
ElementContext& elemCtx,
const Model& model,
std::size_t threadId)
{
// The sequential residual is a linear combination of the
// mass balance residuals, with coefficients equal to (for
// water, oil, gas):
// 1/bw,
// (1/bo - rs/bg)/(1-rs*rv)
// (1/bg - rv/bo)/(1-rs*rv)
// These coefficients must be applied for both the residual and
// Jacobian.
using FluidSystem = typename Model::FluidSystem;
using LhsEval = double;
using Indices = typename Model::Indices;
using PrimaryVariables = typename Model::PrimaryVariables;
using VectorBlockType = typename Vector::block_type;
using Evaluation =
typename std::decay_t<decltype(model.localLinearizer(threadId).localResidual().residual(0))>::block_type;
using Toolbox = MathToolbox<Evaluation>;
VectorBlockType rhs(0.0);
const auto& solution = model.solution(/*timeIdx*/ 0);
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(gridView)) {
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& index = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
VectorBlockType bweights;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(
FluidSystem::solventComponentIndex(FluidSystem::waterPhaseIdx));
bweights[activeCompIdx]
= Toolbox::template decay<LhsEval>(1 / fs.invB(FluidSystem::waterPhaseIdx));
}
double denominator = 1.0;
double rs = Toolbox::template decay<double>(fs.Rs());
double rv = Toolbox::template decay<double>(fs.Rv());
const auto& priVars = solution[index];
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rv) {
rs = 0.0;
}
if (priVars.primaryVarsMeaningGas() == PrimaryVariables::GasMeaning::Rs) {
rv = 0.0;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)
&& FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
denominator = Toolbox::template decay<LhsEval>(1 - rs * rv);
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(
FluidSystem::solventComponentIndex(FluidSystem::oilPhaseIdx));
bweights[activeCompIdx] = Toolbox::template decay<LhsEval>(
(1 / fs.invB(FluidSystem::oilPhaseIdx) - rs / fs.invB(FluidSystem::gasPhaseIdx))
/ denominator);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(
FluidSystem::solventComponentIndex(FluidSystem::gasPhaseIdx));
bweights[activeCompIdx] = Toolbox::template decay<LhsEval>(
(1 / fs.invB(FluidSystem::gasPhaseIdx) - rv / fs.invB(FluidSystem::oilPhaseIdx))
/ denominator);
}
weights[index] = bweights;
}
OPM_END_PARALLEL_TRY_CATCH("getTrueImpesAnalyticWeights() failed: ", elemCtx.simulator().vanguard().grid().comm());
}
} // namespace Amg
} // namespace Opm
#endif // OPM_GET_QUASI_IMPES_WEIGHTS_HEADER_INCLUDED