opm-simulators/opm/simulators/wells/WellInterfaceGeneric.cpp
2023-12-12 09:51:50 +01:00

796 lines
27 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellInterfaceGeneric.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/input/eclipse/Schedule/Well/FilterCake.hpp>
#include <opm/input/eclipse/Schedule/Well/WellBrineProperties.hpp>
#include <opm/input/eclipse/Schedule/Well/WellConnections.hpp>
#include <opm/input/eclipse/Schedule/Well/WellFoamProperties.hpp>
#include <opm/input/eclipse/Schedule/Well/WellMICPProperties.hpp>
#include <opm/input/eclipse/Schedule/Well/WellPolymerProperties.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
#include <opm/input/eclipse/Schedule/Well/WVFPEXP.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/simulators/wells/WellTest.hpp>
#include <fmt/format.h>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <stdexcept>
namespace Opm
{
WellInterfaceGeneric::WellInterfaceGeneric(const Well& well,
const ParallelWellInfo& pw_info,
const int time_step,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector<PerforationData>& perf_data)
: well_ecl_(well)
, parallel_well_info_(pw_info)
, current_step_(time_step)
, pvtRegionIdx_(pvtRegionIdx)
, num_components_(num_components)
, number_of_phases_(num_phases)
, index_of_well_(index_of_well)
, perf_data_(&perf_data)
, ipr_a_(num_components)
, ipr_b_(num_components)
{
assert(well.name()==pw_info.name());
assert(std::is_sorted(perf_data.begin(), perf_data.end(),
[](const auto& perf1, const auto& perf2){
return perf1.ecl_index < perf2.ecl_index;
}));
if (time_step < 0) {
OPM_THROW(std::invalid_argument, "Negative time step is used to construct WellInterface");
}
ref_depth_ = well.getRefDepth();
// We do not want to count SHUT perforations here, so
// it would be wrong to use wells.getConnections().size().
number_of_perforations_ = perf_data.size();
// perforations related
{
well_cells_.resize(number_of_perforations_);
well_index_.resize(number_of_perforations_);
saturation_table_number_.resize(number_of_perforations_);
int perf = 0;
for (const auto& pd : perf_data) {
well_cells_[perf] = pd.cell_index;
well_index_[perf] = pd.connection_transmissibility_factor;
saturation_table_number_[perf] = pd.satnum_id;
++perf;
}
}
// initialization of the completions mapping
initCompletions();
well_efficiency_factor_ = 1.0;
this->wellStatus_ = Well::Status::OPEN;
if (well.getStatus() == Well::Status::STOP) {
this->wellStatus_ = Well::Status::STOP;
}
wsolvent_ = 0.0;
well_control_log_.clear();
}
// Currently the VFP calculations requires three-phase input data, see
// the documentation for keyword VFPPROD and its implementation in
// VFPProdProperties.cpp. However, by setting the gas flow rate to a dummy
// value in VFPPROD record 5 (GFR values) and supplying a dummy input value
// for the gas rate to the methods in VFPProdProperties.cpp, we can extend
// the VFP calculations to the two-phase oil-water case.
void WellInterfaceGeneric::adaptRatesForVFP(std::vector<double>& rates) const
{
const auto& pu = this->phaseUsage();
if (pu.num_phases == 2) {
if ( pu.phase_used[BlackoilPhases::Aqua] == 1
&& pu.phase_used[BlackoilPhases::Liquid] == 1
&& pu.phase_used[BlackoilPhases::Vapour] == 0)
{
assert(rates.size() == 2);
rates.push_back(0.0); // set gas rate to zero
}
else {
throw std::logic_error("Two-phase VFP calculation only "
"supported for oil and water");
}
}
}
const std::vector<PerforationData>& WellInterfaceGeneric::perforationData() const
{
return *perf_data_;
}
const std::string& WellInterfaceGeneric::name() const
{
return well_ecl_.name();
}
bool WellInterfaceGeneric::isInjector() const
{
return well_ecl_.isInjector();
}
bool WellInterfaceGeneric::isProducer() const
{
return well_ecl_.isProducer();
}
int WellInterfaceGeneric::indexOfWell() const
{
return index_of_well_;
}
bool WellInterfaceGeneric::getAllowCrossFlow() const
{
return well_ecl_.getAllowCrossFlow();
}
const Well& WellInterfaceGeneric::wellEcl() const
{
return well_ecl_;
}
Well& WellInterfaceGeneric::wellEcl()
{
return well_ecl_;
}
const PhaseUsage& WellInterfaceGeneric::phaseUsage() const
{
assert(phase_usage_ != nullptr);
return *phase_usage_;
}
double WellInterfaceGeneric::wsolvent() const
{
return wsolvent_;
}
double WellInterfaceGeneric::rsRvInj() const
{
return well_ecl_.getInjectionProperties().rsRvInj;
}
void WellInterfaceGeneric::initInjMult(const std::vector<double>& max_inj_mult)
{
// prev_inj_multiplier_ will stay unchanged during the time step
// while inj_multiplier_ might be updated during the time step
this->prev_inj_multiplier_ = max_inj_mult;
// initializing the inj_multipler_ to be 1.0
this->inj_multiplier_ = std::vector<double>(max_inj_mult.size(), 1.);
}
void WellInterfaceGeneric::updateInjMult(std::vector<double>& inj_multipliers, DeferredLogger& deferred_logger) const
{
if (inj_multipliers.size() != this->inj_multiplier_.size()) {
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("We do not support changing connection numbers during simulation with WINJMULT "
"for well {}", name()),
deferred_logger);
}
inj_multipliers = this->inj_multiplier_;
}
double WellInterfaceGeneric::getInjMult(const int perf,
const double bhp,
const double perf_pres) const
{
assert(!this->isProducer());
double multiplier = 1.;
const auto perf_ecl_index = this->perforationData()[perf].ecl_index;
const bool is_wrev = this->well_ecl_.getInjMultMode() == Well::InjMultMode::WREV;
const bool active_injmult = (is_wrev && this->well_ecl_.aciveWellInjMult()) ||
this->well_ecl_.getConnections()[perf_ecl_index].activeInjMult();
if (active_injmult) {
const auto& injmult= is_wrev ? this->well_ecl_.getWellInjMult()
: this->well_ecl_.getConnections()[perf_ecl_index].injmult();
const double pres = is_wrev ? bhp : perf_pres;
const auto frac_press = injmult.fracture_pressure;
const auto gradient = injmult.multiplier_gradient;
if (pres > frac_press) {
multiplier = 1. + (pres - frac_press) * gradient;
}
}
// for CIRR mode, if there is no active WINJMULT setup, we will use the previous injection multiplier,
// to mimic keeping the existing fracturing open
if (this->well_ecl_.getInjMultMode() == Well::InjMultMode::CIRR) {
multiplier = std::max(multiplier, this->prev_inj_multiplier_[perf_ecl_index]);
}
this->inj_multiplier_[perf_ecl_index] = multiplier;
return multiplier;
}
bool WellInterfaceGeneric::wellHasTHPConstraints(const SummaryState& summaryState) const
{
// only wells under prediction mode can have THP constraint
if (!this->wellEcl().predictionMode()) {
return false;
}
if (dynamic_thp_limit_) {
return true;
}
return WellBhpThpCalculator(*this).wellHasTHPConstraints(summaryState);
}
void WellInterfaceGeneric::updateWellTestState(const SingleWellState& ws,
const double& simulationTime,
const bool& writeMessageToOPMLog,
WellTestState& wellTestState,
DeferredLogger& deferred_logger) const
{
// updating well test state based on Economic limits for operable wells
if (this->isOperableAndSolvable()) {
WellTest(*this).updateWellTestStateEconomic(ws, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
} else {
// updating well test state based on physical (THP/BHP) limits.
WellTest(*this).updateWellTestStatePhysical(simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
}
// TODO: well can be shut/closed due to other reasons
}
double WellInterfaceGeneric::getTHPConstraint(const SummaryState& summaryState) const
{
if (dynamic_thp_limit_) {
return *dynamic_thp_limit_;
}
return WellBhpThpCalculator(*this).getTHPConstraint(summaryState);
}
bool WellInterfaceGeneric::underPredictionMode() const
{
return well_ecl_.predictionMode();
}
void WellInterfaceGeneric::initCompletions()
{
assert(completions_.empty() );
const WellConnections& connections = well_ecl_.getConnections();
const std::size_t num_conns = connections.size();
int num_active_connections = 0;
auto my_next_perf = perf_data_->begin();
for (std::size_t c = 0; c < num_conns; ++c) {
if (my_next_perf == perf_data_->end())
{
break;
}
if (my_next_perf->ecl_index > c)
{
continue;
}
assert(my_next_perf->ecl_index == c);
if (connections[c].state() == Connection::State::OPEN) {
completions_[connections[c].complnum()].push_back(num_active_connections++);
}
++my_next_perf;
}
assert(my_next_perf == perf_data_->end());
}
void WellInterfaceGeneric::closeCompletions(const WellTestState& wellTestState)
{
const auto& connections = well_ecl_.getConnections();
int perfIdx = 0;
for (const auto& connection : connections) {
if (connection.state() == Connection::State::OPEN) {
if (wellTestState.completion_is_closed(name(), connection.complnum())) {
this->well_index_[perfIdx] = 0.0;
}
perfIdx++;
}
}
}
void WellInterfaceGeneric::setVFPProperties(const VFPProperties* vfp_properties_arg)
{
vfp_properties_ = vfp_properties_arg;
}
void WellInterfaceGeneric::setPrevSurfaceRates(WellState& well_state,
const WellState& prev_well_state) const
{
auto& ws = well_state.well(this->index_of_well_);
auto& ws_prev = prev_well_state.well(this->index_of_well_);
// The logic here is a bit fragile:
// We need non-zero prev_surface_rates for the purpose of providing explicit fractions
// (if needed) for vfp interpolation.
// We assume that current surface rates either are initialized from previous step
// or (if newly opened) from updateWellStateRates. This is fine unless well was
// stopped in previous step in which case it's rates will be zero. In this case,
// we select the previous rates of the previous well state (and hope for the best).
const bool zero_rates = std::all_of(ws.surface_rates.begin(), ws.surface_rates.end(),
[](double rate) {
return rate == 0.; // TODO: should we use a threshhold for comparison?
} );
if (zero_rates) {
ws.prev_surface_rates = ws_prev.prev_surface_rates;
} else {
ws.prev_surface_rates = ws.surface_rates;
}
}
void WellInterfaceGeneric::setGuideRate(const GuideRate* guide_rate_arg)
{
guide_rate_ = guide_rate_arg;
}
void WellInterfaceGeneric::setWellEfficiencyFactor(const double efficiency_factor)
{
well_efficiency_factor_ = efficiency_factor;
}
void WellInterfaceGeneric::setRepRadiusPerfLength()
{
const int nperf = number_of_perforations_;
perf_rep_radius_.clear();
perf_length_.clear();
bore_diameters_.clear();
perf_rep_radius_.reserve(nperf);
perf_length_.reserve(nperf);
bore_diameters_.reserve(nperf);
const WellConnections& connections = well_ecl_.getConnections();
const std::size_t num_conns = connections.size();
int num_active_connections = 0;
auto my_next_perf = perf_data_->begin();
for (std::size_t c = 0; c < num_conns; ++c) {
if (my_next_perf == perf_data_->end())
{
break;
}
if (my_next_perf->ecl_index > c)
{
continue;
}
assert(my_next_perf->ecl_index == c);
const auto& connection = connections[c];
if (connection.state() == Connection::State::OPEN) {
double radius = connection.rw();
double re = connection.re(); // area equivalent radius of the grid block
double perf_length = connection.connectionLength(); // the length of the well perforation
const double repR = std::sqrt(re * radius);
perf_rep_radius_.push_back(repR);
perf_length_.push_back(perf_length);
bore_diameters_.push_back(2. * radius);
num_active_connections++;
}
++my_next_perf;
}
assert(my_next_perf == perf_data_->end());
assert(num_active_connections == nperf);
}
void WellInterfaceGeneric::setWsolvent(const double wsolvent)
{
wsolvent_ = wsolvent;
}
void WellInterfaceGeneric::setDynamicThpLimit(const double thp_limit)
{
dynamic_thp_limit_ = thp_limit;
}
std::optional<double> WellInterfaceGeneric::getDynamicThpLimit() const
{
return dynamic_thp_limit_;
}
void WellInterfaceGeneric::updatePerforatedCell(std::vector<bool>& is_cell_perforated)
{
for (int perf_idx = 0; perf_idx<number_of_perforations_; ++perf_idx) {
is_cell_perforated[well_cells_[perf_idx]] = true;
}
}
bool WellInterfaceGeneric::isVFPActive(DeferredLogger& deferred_logger) const
{
// since the well_controls only handles the VFP number when THP constraint/target is there.
// we need to get the table number through the parser, in case THP constraint/target is not there.
// When THP control/limit is not active, if available VFP table is provided, we will still need to
// update THP value. However, it will only used for output purpose.
if (isProducer()) { // producer
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getProd()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("VFPPROD table {} is specified "
"for well {}, while we could not access it during simulation",
table_id, name()),
deferred_logger);
}
}
} else { // injector
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getInj()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("VFPINJ table {} is specified "
"for well {}, while we could not access it during simulation",
table_id, name()),
deferred_logger);
}
}
}
}
bool WellInterfaceGeneric::isOperableAndSolvable() const
{
return operability_status_.isOperableAndSolvable();
}
bool WellInterfaceGeneric::useVfpExplicit() const
{
const auto& wvfpexp = well_ecl_.getWVFPEXP();
return (wvfpexp.explicit_lookup() || operability_status_.use_vfpexplicit);
}
bool WellInterfaceGeneric::thpLimitViolatedButNotSwitched() const
{
return operability_status_.thp_limit_violated_but_not_switched;
}
double WellInterfaceGeneric::getALQ(const WellState& well_state) const
{
// no alq for injectors.
if (isInjector())
return 0.0;
return well_state.getALQ(name());
}
void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, DeferredLogger& deferred_logger) const
{
if (well_control_log_.empty())
return;
std::string from = well_control_log_[0];
std::string to;
if (isInjector()) {
to = WellInjectorCMode2String(ws.injection_cmode);
} else {
to = WellProducerCMode2String(ws.production_cmode);
}
// only report the final switching
if (from != to) {
deferred_logger.info(fmt::format(" Well {} control mode changed from {} to {}",
name(), from, to));
}
}
bool WellInterfaceGeneric::isPressureControlled(const WellState& well_state) const
{
const auto& ws = well_state.well(this->index_of_well_);
if (this->isInjector()) {
const Well::InjectorCMode& current = ws.injection_cmode;
return current == Well::InjectorCMode::THP ||
current == Well::InjectorCMode::BHP;
} else {
const Well::ProducerCMode& current = ws.production_cmode;
return current == Well::ProducerCMode::THP ||
current == Well::ProducerCMode::BHP;
}
}
bool WellInterfaceGeneric::wellUnderZeroRateTarget(const SummaryState& summary_state,
const WellState& well_state) const
{
if (this->isProducer()) { // producers
const auto prod_controls = this->well_ecl_.productionControls(summary_state);
const auto prod_mode = well_state.well(this->indexOfWell()).production_cmode;
return wellhelpers::rateControlWithZeroProdTarget(prod_controls, prod_mode);
} else { // injectors
const auto inj_controls = this->well_ecl_.injectionControls(summary_state);
const auto inj_mode = well_state.well(this->indexOfWell()).injection_cmode;
return wellhelpers::rateControlWithZeroInjTarget(inj_controls, inj_mode);
}
}
bool WellInterfaceGeneric::stopppedOrZeroRateTarget(const SummaryState& summary_state,
const WellState& well_state) const
{
return (this->wellIsStopped() || this->wellUnderZeroRateTarget(summary_state, well_state));
}
void WellInterfaceGeneric::resetWellOperability()
{
this->operability_status_.resetOperability();
}
double WellInterfaceGeneric::wmicrobes_() const
{
auto injectorType = this->well_ecl_.injectorType();
if (injectorType == InjectorType::WATER) {
WellMICPProperties microbes = this->well_ecl_.getMICPProperties();
const double microbial_injection_concentration = microbes.m_microbialConcentration;
return microbial_injection_concentration;
} else {
// Not a water injection well => no microbes.
return 0.0;
}
}
double WellInterfaceGeneric::wfoam_() const
{
auto injectorType = this->well_ecl_.injectorType();
if (injectorType == InjectorType::GAS) {
WellFoamProperties fprop = this->well_ecl_.getFoamProperties();
return fprop.m_foamConcentration;
} else {
// Not a gas injection well => no foam.
return 0.0;
}
}
double WellInterfaceGeneric::wsalt_() const
{
auto injectorType = this->well_ecl_.injectorType();
if (injectorType == InjectorType::WATER) {
WellBrineProperties fprop = this->well_ecl_.getBrineProperties();
return fprop.m_saltConcentration;
} else {
// Not a water injection well => no salt (?).
return 0.0;
}
}
double WellInterfaceGeneric::woxygen_() const
{
auto injectorType = this->well_ecl_.injectorType();
if (injectorType == InjectorType::WATER) {
WellMICPProperties oxygen = this->well_ecl_.getMICPProperties();
const double oxygen_injection_concentration = oxygen.m_oxygenConcentration;
return oxygen_injection_concentration;
} else {
// Not a water injection well => no oxygen.
return 0.0;
}
}
double WellInterfaceGeneric::wpolymer_() const
{
auto injectorType = this->well_ecl_.injectorType();
if (injectorType == InjectorType::WATER) {
WellPolymerProperties polymer = this->well_ecl_.getPolymerProperties();
const double polymer_injection_concentration = polymer.m_polymerConcentration;
return polymer_injection_concentration;
} else {
// Not a water injection well => no polymer.
return 0.0;
}
}
double WellInterfaceGeneric::wurea_() const
{
auto injectorType = this->well_ecl_.injectorType();
if (injectorType == InjectorType::WATER) {
WellMICPProperties urea = this->well_ecl_.getMICPProperties();
const double urea_injection_concentration = urea.m_ureaConcentration / 10.; //Dividing by scaling factor 10
return urea_injection_concentration;
} else {
// Not a water injection well => no urea.
return 0.0;
}
}
int WellInterfaceGeneric::polymerTable_() const
{
return this->well_ecl_.getPolymerProperties().m_skprpolytable;
}
int WellInterfaceGeneric::polymerWaterTable_() const
{
return this->well_ecl_.getPolymerProperties().m_skprwattable;
}
int WellInterfaceGeneric::polymerInjTable_() const
{
return this->well_ecl_.getPolymerProperties().m_plymwinjtable;
}
std::pair<bool,bool> WellInterfaceGeneric::
computeWellPotentials(std::vector<double>& well_potentials,
const WellState& well_state)
{
const int np = this->number_of_phases_;
well_potentials.resize(np, 0.0);
// Stopped wells have zero potential.
if (this->wellIsStopped()) {
return {false, false};
}
this->operability_status_.has_negative_potentials = false;
// If the well is pressure controlled the potential equals the rate.
bool thp_controlled_well = false;
bool bhp_controlled_well = false;
bool compute_potential = true;
const auto& ws = well_state.well(this->index_of_well_);
if (this->isInjector()) {
const Well::InjectorCMode& current = ws.injection_cmode;
if (current == Well::InjectorCMode::THP) {
thp_controlled_well = true;
}
if (current == Well::InjectorCMode::BHP) {
bhp_controlled_well = true;
}
} else {
const Well::ProducerCMode& current = ws.production_cmode;
if (current == Well::ProducerCMode::THP) {
thp_controlled_well = true;
}
if (current == Well::ProducerCMode::BHP) {
bhp_controlled_well = true;
}
}
if (!this->changed_to_open_this_step_ &&
(thp_controlled_well || bhp_controlled_well)) {
double total_rate = 0.0;
const double sign = this->isInjector() ? 1.0 : -1.0;
for (int phase = 0; phase < np; ++phase){
total_rate += sign * ws.surface_rates[phase];
}
// for pressure controlled wells the well rates are the potentials
// if the rates are trivial we are most probably looking at the newly
// opened well, and we therefore make the effort of computing the potentials anyway.
if (total_rate > 0) {
for (int phase = 0; phase < np; ++phase){
well_potentials[phase] = sign * ws.surface_rates[phase];
}
compute_potential = false;
}
}
return {compute_potential, bhp_controlled_well};
}
void WellInterfaceGeneric::
checkNegativeWellPotentials(std::vector<double>& well_potentials,
const bool checkOperability,
DeferredLogger& deferred_logger)
{
const double sign = this->isInjector() ? 1.0 : -1.0;
double total_potential = 0.0;
for (int phase = 0; phase < this->number_of_phases_; ++phase) {
well_potentials[phase] *= sign;
total_potential += well_potentials[phase];
}
if (total_potential < 0.0 && checkOperability) {
// wells with negative potentials are not operable
this->operability_status_.has_negative_potentials = true;
const std::string msg = std::string("well ") + this->name() +
": has negative potentials and is not operable";
deferred_logger.warning("NEGATIVE_POTENTIALS_INOPERABLE", msg);
}
}
void WellInterfaceGeneric::
prepareForPotentialCalculations(const SummaryState& summary_state,
WellState& well_state,
Well::InjectionControls& inj_controls,
Well::ProductionControls& prod_controls) const
{
const bool has_thp = this->wellHasTHPConstraints(summary_state);
auto& ws = well_state.well(this->index_of_well_);
// Modify control (only pressure constraints) and set new target if needed.
// Also set value for current target in state
if (this->isInjector()) {
inj_controls.clearControls();
inj_controls.addControl(Well::InjectorCMode::BHP);
if (has_thp){
inj_controls.addControl(Well::InjectorCMode::THP);
}
if (!(ws.injection_cmode == Well::InjectorCMode::BHP)){
if (has_thp){
ws.injection_cmode = Well::InjectorCMode::THP;
ws.thp = this->getTHPConstraint(summary_state);
} else {
ws.injection_cmode = Well::InjectorCMode::BHP;
ws.bhp = inj_controls.bhp_limit;
}
}
} else { // producer
prod_controls.clearControls();
prod_controls.addControl(Well::ProducerCMode::BHP);
if (has_thp){
prod_controls.addControl(Well::ProducerCMode::THP);
}
if (!(ws.production_cmode == Well::ProducerCMode::BHP)){
if (has_thp){
ws.production_cmode = Well::ProducerCMode::THP;
ws.thp = this->getTHPConstraint(summary_state);
} else {
ws.production_cmode = Well::ProducerCMode::BHP;
ws.bhp = prod_controls.bhp_limit;
}
}
}
}
} // namespace Opm