opm-simulators/opm/models/parallel/tasklets.hh
2020-06-10 13:49:42 +02:00

349 lines
10 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \brief Provides a mechanism to dispatch work to separate threads
*/
#ifndef EWOMS_TASKLETS_HH
#define EWOMS_TASKLETS_HH
#include <stdexcept>
#include <cassert>
#include <thread>
#include <queue>
#include <mutex>
#include <iostream>
#include <condition_variable>
namespace Opm {
/*!
* \brief The base class for tasklets.
*
* Tasklets are a generic mechanism for potentially running work in a separate thread.
*/
class TaskletInterface
{
public:
TaskletInterface(int refCount = 1)
: referenceCount_(refCount)
{}
virtual ~TaskletInterface() {}
virtual void run() = 0;
virtual bool isEndMarker () const { return false; }
void dereference()
{ -- referenceCount_; }
int referenceCount() const
{ return referenceCount_; }
private:
int referenceCount_;
};
/*!
* \brief A simple tasklet that runs a function that returns void and does not take any
* arguments a given number of times.
*/
template <class Fn>
class FunctionRunnerTasklet : public TaskletInterface
{
public:
FunctionRunnerTasklet(const FunctionRunnerTasklet&) = default;
FunctionRunnerTasklet(int numInvocations, const Fn& fn)
: TaskletInterface(numInvocations)
, fn_(fn)
{}
void run() override
{ fn_(); }
private:
const Fn& fn_;
};
class TaskletRunner;
// this class stores the thread local static attributes for the TaskletRunner class. we
// cannot put them directly into TaskletRunner because defining static members for
// non-template classes in headers leads the linker to choke in case multiple compile
// units are used.
template <class Dummy = void>
struct TaskletRunnerHelper_
{
static thread_local TaskletRunner* taskletRunner_;
static thread_local int workerThreadIndex_;
};
template <class Dummy>
thread_local TaskletRunner* TaskletRunnerHelper_<Dummy>::taskletRunner_ = nullptr;
template <class Dummy>
thread_local int TaskletRunnerHelper_<Dummy>::workerThreadIndex_ = -1;
/*!
* \brief Handles where a given tasklet is run.
*
* Depending on the number of worker threads, a tasklet can either be run in a separate
* worker thread or by the main thread.
*/
class TaskletRunner
{
/// \brief Implements a barrier. This class can only be used in the asynchronous case.
class BarrierTasklet : public TaskletInterface
{
public:
BarrierTasklet(unsigned numWorkers)
: TaskletInterface(/*refCount=*/numWorkers)
{
numWorkers_ = numWorkers;
numWaiting_ = 0;
}
void run()
{ wait(); }
void wait()
{
std::unique_lock<std::mutex> lock(barrierMutex_);
numWaiting_ += 1;
if (numWaiting_ >= numWorkers_ + 1) {
lock.unlock();
barrierCondition_.notify_all();
}
else {
const auto& areAllWaiting =
[this]() -> bool
{ return this->numWaiting_ >= this->numWorkers_ + 1; };
barrierCondition_.wait(lock, /*predicate=*/areAllWaiting);
}
}
private:
unsigned numWorkers_;
unsigned numWaiting_;
std::condition_variable barrierCondition_;
std::mutex barrierMutex_;
};
/// \brief TerminateThreadTasklet class
/// Empty tasklet marking thread termination.
class TerminateThreadTasklet : public TaskletInterface
{
public:
void run()
{ }
bool isEndMarker() const
{ return true; }
};
public:
// prohibit copying of tasklet runners
TaskletRunner(const TaskletRunner&) = delete;
/*!
* \brief Creates a tasklet runner with numWorkers underling threads for doing work.
*
* The number of worker threads may be 0. In this case, all work is done by the main
* thread (synchronous mode).
*/
TaskletRunner(unsigned numWorkers)
{
threads_.resize(numWorkers);
for (unsigned i = 0; i < numWorkers; ++i)
// create a worker thread
threads_[i].reset(new std::thread(startWorkerThread_, this, i));
}
/*!
* \brief Destructor
*
* If worker threads were created to run the tasklets, this method waits until all
* worker threads have been terminated, i.e. all scheduled tasklets are guaranteed to
* be completed.
*/
~TaskletRunner()
{
if (threads_.size() > 0) {
// dispatch a tasklet which will terminate the worker thread
dispatch(std::make_shared<TerminateThreadTasklet>());
// wait until all worker threads have terminated
for (auto& thread : threads_)
thread->join();
}
}
/*!
* \brief Returns the index of the current worker thread.
*
* If the current thread is not a worker thread, -1 is returned.
*/
int workerThreadIndex() const
{
if (TaskletRunnerHelper_<void>::taskletRunner_ != this)
return -1;
return TaskletRunnerHelper_<void>::workerThreadIndex_;
}
/*!
* \brief Returns the number of worker threads for the tasklet runner.
*/
int numWorkerThreads() const
{ return threads_.size(); }
/*!
* \brief Add a new tasklet.
*
* The tasklet is either run immediately or deferred to a separate thread.
*/
void dispatch(std::shared_ptr<TaskletInterface> tasklet)
{
if (threads_.empty()) {
// run the tasklet immediately in synchronous mode.
while (tasklet->referenceCount() > 0) {
tasklet->dereference();
try {
tasklet->run();
}
catch (const std::exception& e) {
std::cerr << "ERROR: Uncaught std::exception when running tasklet: " << e.what() << ". Trying to continue.\n";
}
catch (...) {
std::cerr << "ERROR: Uncaught exception (general type) when running tasklet. Trying to continue.\n";
}
}
}
else {
// lock mutex for the tasklet queue to make sure that nobody messes with the
// task queue
taskletQueueMutex_.lock();
// add the tasklet to the queue
taskletQueue_.push(tasklet);
taskletQueueMutex_.unlock();
workAvailableCondition_.notify_all();
}
}
/*!
* \brief Convenience method to construct a new function runner tasklet and dispatch it immediately.
*/
template <class Fn>
std::shared_ptr<FunctionRunnerTasklet<Fn> > dispatchFunction(Fn &fn, int numInvocations=1)
{
using Tasklet = FunctionRunnerTasklet<Fn>;
auto tasklet = std::make_shared<Tasklet>(numInvocations, fn);
this->dispatch(tasklet);
return tasklet;
}
/*!
* \brief Make sure that all tasklets have been completed after this method has been called
*/
void barrier()
{
unsigned numWorkers = threads_.size();
if (numWorkers == 0)
// nothing needs to be done to implement a barrier in synchronous mode
return;
// dispatch a barrier tasklet and wait until it has been run by the worker thread
auto barrierTasklet = std::make_shared<BarrierTasklet>(numWorkers);
dispatch(barrierTasklet);
barrierTasklet->wait();
}
protected:
// main function of the worker thread
static void startWorkerThread_(TaskletRunner* taskletRunner, int workerThreadIndex)
{
TaskletRunnerHelper_<void>::taskletRunner_ = taskletRunner;
TaskletRunnerHelper_<void>::workerThreadIndex_ = workerThreadIndex;
taskletRunner->run_();
}
//! do the work until the queue received an end tasklet
void run_()
{
while (true) {
// wait until tasklets have been pushed to the queue. first we need to lock
// mutex for access to taskletQueue_
std::unique_lock<std::mutex> lock(taskletQueueMutex_);
const auto& workIsAvailable =
[this]() -> bool
{ return !taskletQueue_.empty(); };
if (!workIsAvailable())
workAvailableCondition_.wait(lock, /*predicate=*/workIsAvailable);
// remove tasklet from queue
std::shared_ptr<TaskletInterface> tasklet = taskletQueue_.front();
// if tasklet is an end marker, terminate the thread and DO NOT remove the
// tasklet.
if (tasklet->isEndMarker()) {
if(taskletQueue_.size() > 1)
throw std::logic_error("TaskletRunner: Not all queued tasklets were executed");
taskletQueueMutex_.unlock();
return;
}
tasklet->dereference();
if (tasklet->referenceCount() == 0)
// remove tasklets from the queue as soon as their reference count
// reaches zero, i.e. the tasklet has been run often enough.
taskletQueue_.pop();
lock.unlock();
// execute tasklet
try {
tasklet->run();
}
catch (const std::exception& e) {
std::cerr << "ERROR: Uncaught std::exception when running tasklet: " << e.what() << ". Trying to continue.\n";
}
catch (...) {
std::cerr << "ERROR: Uncaught exception when running tasklet. Trying to continue.\n";
}
}
}
std::vector<std::unique_ptr<std::thread> > threads_;
std::queue<std::shared_ptr<TaskletInterface> > taskletQueue_;
std::mutex taskletQueueMutex_;
std::condition_variable workAvailableCondition_;
};
} // end namespace Opm
#endif