mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 21:32:56 -06:00
394 lines
16 KiB
C++
394 lines
16 KiB
C++
/*
|
|
Copyright 2015 Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_THERMAL_OIL_PVT_WRAPPER_HPP
|
|
#define OPM_THERMAL_OIL_PVT_WRAPPER_HPP
|
|
|
|
#include <opm/core/props/pvt/PvtInterface.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Tables/OilvisctTable.hpp>
|
|
|
|
#include <vector>
|
|
|
|
namespace Opm
|
|
{
|
|
/// Class which wraps another (i.e., isothermal) PVT object into one which adds
|
|
/// temperature dependence of oil
|
|
class ThermalOilPvtWrapper : public PvtInterface
|
|
{
|
|
public:
|
|
ThermalOilPvtWrapper()
|
|
{}
|
|
|
|
|
|
/// set the tables which specify the temperature dependence of the oil viscosity
|
|
void initFromDeck(std::shared_ptr<const PvtInterface> isothermalPvt,
|
|
const Opm::Deck& deck,
|
|
const Opm::EclipseState& eclipseState)
|
|
{
|
|
isothermalPvt_ = isothermalPvt;
|
|
|
|
int numRegions;
|
|
auto tables = eclipseState->getTableManager();
|
|
|
|
if (deck->hasKeyword("PVTO"))
|
|
numRegions = tables->getPvtoTables().size();
|
|
else if (deck->hasKeyword("PVDO"))
|
|
numRegions = tables->getPvdoTables().size();
|
|
else if (deck->hasKeyword("PVCDO"))
|
|
numRegions = deck->getKeyword("PVCDO").size();
|
|
else
|
|
OPM_THROW(std::runtime_error, "Oil phase was not initialized using a known way");
|
|
|
|
// viscosity
|
|
if (deck->hasKeyword("VISCREF")) {
|
|
oilvisctTables_ = &tables->getOilvisctTables();
|
|
const auto& viscrefKeyword = deck->getKeyword("VISCREF");
|
|
|
|
assert(int(oilvisctTables_->size()) == numRegions);
|
|
assert(int(viscrefKeyword.size()) == numRegions);
|
|
|
|
viscrefPress_.resize(numRegions);
|
|
viscrefRs_.resize(numRegions);
|
|
muRef_.resize(numRegions);
|
|
for (int regionIdx = 0; regionIdx < numRegions; ++regionIdx) {
|
|
const auto& viscrefRecord = viscrefKeyword.getRecord(regionIdx);
|
|
viscrefPress_[regionIdx] = viscrefRecord.getItem("REFERENCE_PRESSURE").getSIDouble(0);
|
|
viscrefRs_[regionIdx] = viscrefRecord.getItem("REFERENCE_RS").getSIDouble(0);
|
|
|
|
// temperature used to calculate the reference viscosity [K]. the
|
|
// value does not really matter if the underlying PVT object really
|
|
// is isothermal...
|
|
double Tref = 273.15 + 20;
|
|
|
|
// compute the reference viscosity using the isothermal PVT object.
|
|
double tmp1, tmp2;
|
|
isothermalPvt_->mu(1,
|
|
®ionIdx,
|
|
&viscrefPress_[regionIdx],
|
|
&Tref,
|
|
&viscrefRs_[regionIdx],
|
|
&muRef_[regionIdx],
|
|
&tmp1,
|
|
&tmp2);
|
|
}
|
|
}
|
|
|
|
// quantities required for density. note that we just always use the values
|
|
// for the first EOS. (since EOS != PVT region.)
|
|
tref_ = 0.0;
|
|
if (deck->hasKeyword("THERMEX1")) {
|
|
oilCompIdx_ = deck->getKeyword("OCOMPIDX").getRecord(0).getItem("OIL_COMPONENT_INDEX").get< int >(0) - 1;
|
|
|
|
// always use the values of the first EOS
|
|
tref_ = deck->getKeyword("TREF").getRecord(0).getItem("TEMPERATURE").getSIDouble(oilCompIdx_);
|
|
pref_ = deck->getKeyword("PREF").getRecord(0).getItem("PRESSURE").getSIDouble(oilCompIdx_);
|
|
cref_ = deck->getKeyword("CREF").getRecord(0).getItem("COMPRESSIBILITY").getSIDouble(oilCompIdx_);
|
|
thermex1_ = deck->getKeyword("THERMEX1").getRecord(0).getItem("EXPANSION_COEFF").getSIDouble(oilCompIdx_);
|
|
}
|
|
}
|
|
|
|
virtual void mu(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
double* output_mu) const
|
|
{
|
|
if (oilvisctTables_)
|
|
// TODO: temperature dependence for viscosity depending on z
|
|
OPM_THROW(std::runtime_error,
|
|
"temperature dependent viscosity as a function of z "
|
|
"is not yet implemented!");
|
|
|
|
// compute the isothermal viscosity
|
|
isothermalPvt_->mu(n, pvtRegionIdx, p, T, z, output_mu);
|
|
}
|
|
|
|
virtual void mu(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* T,
|
|
const double* r,
|
|
double* output_mu,
|
|
double* output_dmudp,
|
|
double* output_dmudr) const
|
|
{
|
|
// compute the isothermal viscosity and its derivatives
|
|
isothermalPvt_->mu(n, pvtRegionIdx, p, T, r, output_mu, output_dmudp, output_dmudr);
|
|
|
|
if (!oilvisctTables_)
|
|
// isothermal case
|
|
return;
|
|
|
|
// temperature dependence
|
|
for (int i = 0; i < n; ++i) {
|
|
int regionIdx = getPvtRegionIndex_(pvtRegionIdx, i);
|
|
|
|
// calculate the viscosity of the isothermal keyword for the reference
|
|
// pressure given by the VISCREF keyword.
|
|
double muRef = muRef_[regionIdx];
|
|
|
|
// compute the viscosity deviation due to temperature
|
|
double alpha;
|
|
{
|
|
const OilvisctTable& oilvisctTable = oilvisctTables_->getTable<OilvisctTable>(regionIdx);
|
|
double muOilvisct = oilvisctTable.evaluate("Viscosity", T[i]);
|
|
alpha = muOilvisct/muRef;
|
|
}
|
|
|
|
output_mu[i] *= alpha;
|
|
output_dmudp[i] *= alpha;
|
|
output_dmudr[i] *= alpha;
|
|
// TODO (?): derivative of viscosity w.r.t. temperature.
|
|
}
|
|
}
|
|
|
|
virtual void mu(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* T,
|
|
const double* r,
|
|
const PhasePresence* cond,
|
|
double* output_mu,
|
|
double* output_dmudp,
|
|
double* output_dmudr) const
|
|
{
|
|
// compute the isothermal viscosity and its derivatives
|
|
isothermalPvt_->mu(n, pvtRegionIdx, p, T, r, cond, output_mu, output_dmudp, output_dmudr);
|
|
|
|
if (!oilvisctTables_)
|
|
// isothermal case
|
|
return;
|
|
|
|
// temperature dependence
|
|
for (int i = 0; i < n; ++i) {
|
|
int regionIdx = getPvtRegionIndex_(pvtRegionIdx, i);
|
|
|
|
// calculate the viscosity of the isothermal keyword for the reference
|
|
// pressure given by the VISCREF keyword.
|
|
double muRef = muRef_[regionIdx];
|
|
|
|
// compute the viscosity deviation due to temperature
|
|
double alpha;
|
|
{
|
|
const OilvisctTable& oilvisctTable = oilvisctTables_->getTable<OilvisctTable>(regionIdx);
|
|
double muOilvisct = oilvisctTable.evaluate("Viscosity", T[i]);
|
|
alpha = muOilvisct/muRef;
|
|
}
|
|
output_mu[i] *= alpha;
|
|
output_dmudp[i] *= alpha;
|
|
output_dmudr[i] *= alpha;
|
|
// TODO (?): derivative of viscosity w.r.t. temperature.
|
|
}
|
|
}
|
|
|
|
virtual void B(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
double* output_B) const
|
|
{
|
|
// isothermal case
|
|
isothermalPvt_->B(n, pvtRegionIdx, p, T, z, output_B);
|
|
|
|
if (thermex1_ <= 0.0)
|
|
// isothermal case
|
|
return;
|
|
|
|
// deal with the temperature dependence of the oil phase. we use equation
|
|
// (3.208) from the Eclipse 2011.1 Reference Manual, but we calculate rho_ref
|
|
// using the isothermal keyword instead of using the value for the
|
|
// components, so the oil compressibility is already dealt with there. Note
|
|
// that we only do the part for the oil component here, the part for
|
|
// dissolved gas is ignored so far.
|
|
double cT1 = thermex1_;
|
|
double TRef = tref_;
|
|
for (int i = 0; i < n; ++i) {
|
|
double alpha = (1 + cT1*(T[i] - TRef));
|
|
output_B[i] *= alpha;
|
|
}
|
|
}
|
|
|
|
virtual void dBdp(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* T,
|
|
const double* z,
|
|
double* output_B,
|
|
double* output_dBdp) const
|
|
{
|
|
isothermalPvt_->dBdp(n, pvtRegionIdx, p, T, z, output_B, output_dBdp);
|
|
|
|
if (thermex1_ <= 0.0)
|
|
// isothermal case
|
|
return;
|
|
|
|
// deal with the temperature dependence of the oil phase. we use equation
|
|
// (3.208) from the Eclipse 2011.1 Reference Manual, but we calculate rho_ref
|
|
// using the isothermal keyword instead of using the value for the
|
|
// components, so the oil compressibility is already dealt with there. Note
|
|
// that we only do the part for the oil component here, the part for
|
|
// dissolved gas is ignored so far.
|
|
double cT1 = thermex1_;
|
|
double TRef = tref_;
|
|
for (int i = 0; i < n; ++i) {
|
|
double alpha = (1 + cT1*(T[i] - TRef));
|
|
output_B[i] *= alpha;
|
|
output_dBdp[i] *= alpha;
|
|
}
|
|
}
|
|
|
|
virtual void b(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* T,
|
|
const double* r,
|
|
double* output_b,
|
|
double* output_dbdp,
|
|
double* output_dbdr) const
|
|
{
|
|
isothermalPvt_->b(n, pvtRegionIdx, p, T, r, output_b, output_dbdp, output_dbdr);
|
|
|
|
if (thermex1_ <= 0.0)
|
|
// isothermal case
|
|
return;
|
|
|
|
// deal with the temperature dependence of the oil phase. we use equation
|
|
// (3.208) from the Eclipse 2011.1 Reference Manual, but we calculate rho_ref
|
|
// using the isothermal keyword instead of using the value for the
|
|
// components, so the oil compressibility is already dealt with there. Note
|
|
// that we only do the part for the oil component here, the part for
|
|
// dissolved gas is ignored so far.
|
|
double cT1 = thermex1_;
|
|
double TRef = tref_;
|
|
for (int i = 0; i < n; ++i) {
|
|
double alpha = 1.0/(1 + cT1*(T[i] - TRef));
|
|
output_b[i] *= alpha;
|
|
output_dbdp[i] *= alpha;
|
|
output_dbdr[i] *= alpha;
|
|
}
|
|
}
|
|
|
|
virtual void b(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* T,
|
|
const double* r,
|
|
const PhasePresence* cond,
|
|
double* output_b,
|
|
double* output_dbdp,
|
|
double* output_dbdr) const
|
|
{
|
|
isothermalPvt_->b(n, pvtRegionIdx, p, T, r, cond, output_b, output_dbdp, output_dbdr);
|
|
|
|
if (thermex1_ <= 0.0)
|
|
// isothermal case
|
|
return;
|
|
|
|
// deal with the temperature dependence of the oil phase. we use equation
|
|
// (3.208) from the Eclipse 2011.1 Reference Manual, but we calculate rho_ref
|
|
// using the isothermal keyword instead of using the value for the
|
|
// components, so the oil compressibility is already dealt with there. Note
|
|
// that we only do the part for the oil component here, the part for
|
|
// dissolved gas is ignored so far.
|
|
double cT1 = thermex1_;
|
|
double TRef = tref_;
|
|
for (int i = 0; i < n; ++i) {
|
|
double alpha = 1.0/(1 + cT1*(T[i] - TRef));
|
|
output_b[i] *= alpha;
|
|
output_dbdp[i] *= alpha;
|
|
output_dbdr[i] *= alpha;
|
|
}
|
|
}
|
|
|
|
virtual void rsSat(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
double* output_rsSat,
|
|
double* output_drsSatdp) const
|
|
{
|
|
isothermalPvt_->rsSat(n, pvtRegionIdx, p, output_rsSat, output_drsSatdp);
|
|
}
|
|
|
|
virtual void rvSat(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
double* output_rvSat,
|
|
double* output_drvSatdp) const
|
|
{
|
|
isothermalPvt_->rvSat(n, pvtRegionIdx, p, output_rvSat, output_drvSatdp);
|
|
}
|
|
|
|
virtual void R(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* z,
|
|
double* output_R) const
|
|
{
|
|
isothermalPvt_->R(n, pvtRegionIdx, p, z, output_R);
|
|
}
|
|
|
|
virtual void dRdp(const int n,
|
|
const int* pvtRegionIdx,
|
|
const double* p,
|
|
const double* z,
|
|
double* output_R,
|
|
double* output_dRdp) const
|
|
{
|
|
isothermalPvt_->dRdp(n, pvtRegionIdx, p, z, output_R, output_dRdp);
|
|
}
|
|
|
|
private:
|
|
int getPvtRegionIndex_(const int* pvtRegionIdx, int cellIdx) const
|
|
{
|
|
if (!pvtRegionIdx)
|
|
return 0;
|
|
return pvtRegionIdx[cellIdx];
|
|
}
|
|
|
|
// the PVT propertied for the isothermal case
|
|
std::shared_ptr<const PvtInterface> isothermalPvt_;
|
|
|
|
// The PVT properties needed for temperature dependence of the viscosity. We need
|
|
// to store one value per PVT region.
|
|
std::vector<double> viscrefPress_;
|
|
std::vector<double> viscrefRs_;
|
|
std::vector<double> muRef_;
|
|
|
|
const TableContainer* oilvisctTables_;
|
|
|
|
// The PVT properties needed for temperature dependence of the density. This is
|
|
// specified as one value per EOS in the manual, but we unconditionally use the
|
|
// expansion coefficient of the first EOS...
|
|
int oilCompIdx_;
|
|
double tref_;
|
|
double pref_;
|
|
double cref_;
|
|
double thermex1_;
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|
|
|