opm-simulators/opm/simulators/wells/GasLiftRuntime_impl.hpp
2021-01-26 07:56:59 +01:00

817 lines
29 KiB
C++

/*
Copyright 2020 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/simulators/wells/StandardWell.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/simulators/utils/DeferredLogger.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/SummaryState.hpp>
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/GasLiftOpt.hpp>
#include <optional>
#include <string>
template<typename TypeTag>
Opm::GasLiftRuntime<TypeTag>::
GasLiftRuntime(
const StdWell &std_well,
const Simulator &ebos_simulator,
const SummaryState &summary_state,
DeferredLogger &deferred_logger,
WellState &well_state,
const Well::ProductionControls &controls
) :
controls_{controls},
deferred_logger_{deferred_logger},
ebos_simulator_{ebos_simulator},
potentials_(well_state.numPhases(),0.0),
std_well_{std_well},
summary_state_{summary_state},
well_state_{well_state},
debug{false} // extra debugging output
{
int well_index = this->std_well_.indexOfWell();
const Well::ProducerCMode& control_mode
= well_state_.currentProductionControls()[well_index];
if (control_mode != Well::ProducerCMode::THP)
throw std::logic_error("Bug in flow - invalid control mode detected\n");
const Opm::Schedule& schedule = this->ebos_simulator_.vanguard().schedule();
const int report_step_idx = this->ebos_simulator_.episodeIndex();
auto ecl_well = this->std_well_.wellEcl();
this->well_name_ = ecl_well.name();
const GasLiftOpt& glo = schedule.glo(report_step_idx);
// NOTE: According to LIFTOPT, item 1:
// "Increment size for lift gas injection rate. Lift gas is
// allocated to individual wells in whole numbers of the increment
// size. If gas lift optimization is no longer required, it can be
// turned off by entering a zero or negative number."
// NOTE: This condition was checked in doGasLiftOptimize() in StandardWell
// so it can be assumed that increment_ > 0
this->increment_ = glo.gaslift_increment();
assert( this->increment_ > 0);
// NOTE: The manual (see LIFTOPT, item 2) does not mention
// any default value or restrictions on the economic gradient.
// TODO: The value of the gradient would most likely be a positive
// number. Should we warn or fail on a negative value?
// A negative value for the economic gradient would mean that
// the oil production is decreasing with increased liftgas
// injection (which seems strange)
this->eco_grad_ = glo.min_eco_gradient();
auto& gl_well = glo.well(this->well_name_);
if(useFixedAlq_(gl_well)) {
updateWellStateAlqFixedValue_(gl_well);
this->optimize_ = false; // lift gas supply is fixed
}
else {
setAlqMaxRate_(gl_well);
this->optimize_ = true;
}
computeInitialWellRates_();
if(this->optimize_) {
setAlqMinRate_(gl_well);
// NOTE: According to item 4 in WLIFTOPT, this value does not
// have to be positive.
// TODO: Does it make sense to have a negative value?
this->alpha_w_ = gl_well.weight_factor();
if (this->alpha_w_ <= 0 ) {
displayWarning_("Nonpositive value for alpha_w ignored");
this->alpha_w_ = 1.0;
}
// NOTE: According to item 6 in WLIFTOPT:
// "If this value is greater than zero, the incremental gas rate will influence
// the calculation of the incremental gradient and may be used
// to discourage the allocation of lift gas to wells which produce more gas."
// TODO: Does this mean that we should ignore this value if it
// is negative?
this->alpha_g_ = gl_well.inc_weight_factor();
const auto& pu = std_well_.phaseUsage();
this->oil_pos_ = pu.phase_pos[Oil];
this->gas_pos_ = pu.phase_pos[Gas];
this->water_pos_ = pu.phase_pos[Water];
this->new_alq_ = this->orig_alq_;
// TODO: adhoc value.. Should we keep max_iterations_ as a safety measure
// or does it not make sense to have it?
this->max_iterations_ = 1000;
}
}
/****************************************
* Methods in alphabetical order
****************************************/
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
computeInitialWellRates_()
{
// get the alq value used for this well for the previous time step, or
// if gas lift optimization has not been applied to this well yet, the
// default value is used.
this->orig_alq_ = this->well_state_.getALQ(this->well_name_);
// NOTE: compute initial rates with current ALQ
this->std_well_.computeWellRatesWithThpAlqProd(
this->ebos_simulator_, this->summary_state_, this->deferred_logger_,
this->potentials_, this->orig_alq_);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
computeWellRates_(double bhp, std::vector<double> &potentials)
{
this->std_well_.computeWellRatesWithBhp(
this->ebos_simulator_, bhp, potentials, this->deferred_logger_);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
debugShowIterationInfo_(OptimizeState &state, double alq)
{
const std::string msg = fmt::format("iteration {}, ALQ = {}", state.it, alq);
this->displayDebugMessage_(msg);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
debugShowStartIteration_(double alq, bool increase)
{
const std::string msg =
fmt::format("starting {} iteration, ALQ = {}, oilrate = {}",
(increase ? "increase" : "decrease"),
alq,
-this->potentials_[this->oil_pos_]);
this->displayDebugMessage_(msg);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
displayDebugMessage_(const std::string &msg)
{
const std::string message = fmt::format(
" GLIFT (DEBUG) : Well {} : {}", this->well_name_, msg);
this->deferred_logger_.info(message);
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
displayWarning_(std::string msg)
{
const std::string message = fmt::format(
"GAS LIFT OPTIMIZATION, WELL {} : {}", this->well_name_, msg);
this->deferred_logger_.warning("WARNING", message);
}
// TODO: what if the gas_rate_target_ has been defaulted
// (i.e. value == 0, meaning: "No limit") but the
// oil_rate_target_ has not been defaulted ?
// If the new_oil_rate exceeds the oil_rate_target_ it is cut back,
// but the same cut-back will not happen for the new_gas_rate
// Seems like an inconsistency, since alq should in this
// case also be adjusted (to the smaller value that would
// give oil target rate) but then the gas rate would also be smaller?
// The effect of not reducing the gas rate (if it should be
// reduced?) is that a too large value is used in the
// computation of the economic gradient making the gradient
// smaller than it should be since the term appears in the denominator.
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
getGasRateWithLimit_(double& new_rate, const std::vector<double> &potentials)
{
new_rate = -potentials[this->gas_pos_];
bool limit = false;
if (this->controls_.hasControl(Well::ProducerCMode::GRAT)) {
auto target = this->controls_.gas_rate;
if (new_rate > target) {
new_rate = target;
limit = true;
}
}
return limit;
}
// NOTE: If the computed oil rate is larger than the target
// rate of the well, we reduce it to the target rate. This
// will make the economic gradient smaller than it would be
// if we did not reduce the rate, and it is less
// likely that the current gas lift increment will be
// accepted.
// TODO: If it still is accepted, we should ideally reduce the alq
// also since we also reduced the rate. This might involve
// some sort of iteration though..
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
getOilRateWithLimit_(double& new_rate, const std::vector<double> &potentials)
{
new_rate = -potentials[this->oil_pos_];
bool limit = false;
if (this->controls_.hasControl(Well::ProducerCMode::ORAT)) {
auto target = this->controls_.oil_rate;
if (new_rate > target) {
new_rate = target;
limit = true;
}
}
if (this->controls_.hasControl(Well::ProducerCMode::LRAT)) {
auto target = this->controls_.liquid_rate;
auto oil_rate = -potentials[this->oil_pos_];
auto water_rate = -potentials[this->water_pos_];
auto liq_rate = oil_rate + water_rate;
if (liq_rate > target) {
new_rate = oil_rate * (target/liq_rate);
limit = true;
}
}
return limit;
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
logSuccess_()
{
const std::string message = fmt::format(
"GLIFT, WELL {} {} ALQ from {} to {}",
this->well_name_,
((this->new_alq_ > this->orig_alq_) ? "increased" : "decreased"),
this->orig_alq_,
this->new_alq_);
this->deferred_logger_.info(message);
}
/* - At this point we know that this is a production well, and that its current
* control mode is THP.
*
* - We would like to check if it is possible to
* 1) increase the oil production by adding lift gas injection to the
* well, or if that is not possible, if we 2) should reduce the amount
* of lift gas injected due to a too small gain in oil production
* (with the current lift gas injection rate)
* - For 1) above, we should not add lift gas if it would cause an oil
* rate target to be exceeded, and for 2) we should not reduce the
* amount of liftgas injected below the minimum lift gas injection
* rate.
*
* NOTE: If reducing or adding lift-gas further would cause
* one of the well targets like ORAT, WRAT, GRAT, LRAT, CRAT, RESV, BHP,
* to become violated we should stop the lift gas optimization
* loop.. and then updateWellControls() will later (hopefully) switch the well's
* control mode from THP to the mode of the violated target.
*
* - Lift gas is added if it is economical viable depending on
* the ratio of oil gained compared to the amount of liftgas added.
*
* - Lift gas supply may be limited.
*
* - The current value of liftgas for the well is stored in the WellState object.
*
* - It is assumed that the oil production rate is concave function F
* of the amount of lift gas, such that it increases initially due to the
* reduced density of the mixture in the tubing. However, as the
* lift gas supply is increased further, friction pressure losses in the
* tubing become more important, and the production rate peaks and
* then starts to decrease.
* Since lift gas injection has a price, e.g. compression costs can
* be expressed as a cost per unit rate of lift gas injection,
* it must be balanced against the value of the extra amount of
* oil produced. Thus there is a "minimum economic gradient" of oil
* production rate versus lift gas injection rate, at which the
* value of the extra amount of oil produced by a small increase in
* the lift gas injection rate is equal to the cost of supplying the
* extra amount of lift gas. The optimum lift gas injection rate is then somewhat
* lower than the peak value.
*
* Based on this assumption, we know that if the gradient (derivative) of F is
* positive, but greater than the economic gradient (assuming the
* economic gradient is positive), we should add
* lift gas. On the other hand, if the gradient of F is negative or
* if it is positive but smaller than the economic gradient, the amount
* of lift gas injected should be decreased.
*
*/
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
runOptimize()
{
if (this->optimize_) {
if (!tryIncreaseLiftGas_()) {
if (!tryDecreaseLiftGas_()) {
return;
}
}
logSuccess_();
this->well_state_.setALQ(this->well_name_, this->new_alq_);
}
// NOTE: In addition to the new ALQ value, we also implicitly
// return this->potentials_
}
// INPUT:
// - increase (boolean) :
// - true : try increase the lift gas supply,
// - false : try decrease lift gas supply.
//
// OUTPUT:
// - return value: success (true/false)
// - potentials_ : updated well potentials if success
// - new_alq_ : updated alq if success
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
runOptimizeLoop_(bool increase)
{
auto cur_potentials = this->potentials_; // make copy, since we may fail..
auto oil_rate = -cur_potentials[this->oil_pos_];
auto gas_rate = -cur_potentials[this->gas_pos_];
bool success = false; // did we succeed to increase alq?
auto cur_alq = this->orig_alq_;
if (cur_alq == 0 && !increase) // we don't decrease alq below zero
return false;
auto alq = cur_alq;
OptimizeState state {*this, increase};
if (this->debug) debugShowStartIteration_(alq, increase);
while (!state.stop_iteration && (++state.it <= this->max_iterations_)) {
if (state.checkWellRatesViolated(cur_potentials)) break;
if (state.checkAlqOutsideLimits(alq, oil_rate)) break;
alq = state.addOrSubtractAlqIncrement(alq);
if(this->debug) debugShowIterationInfo_(state, alq);
if (!state.computeBhpAtThpLimit(alq)) break;
// NOTE: if BHP is below limit, we set state.stop_iteration = true
auto bhp = state.getBhpWithLimit();
computeWellRates_(bhp, cur_potentials);
double new_oil_rate = 0.0;
bool oil_is_limited = getOilRateWithLimit_(new_oil_rate, cur_potentials);
if (oil_is_limited && !increase) //if oil is limited we do not want to decrease
break;
double new_gas_rate = 0.0;
bool gas_is_limited = getGasRateWithLimit_(new_gas_rate, cur_potentials);
if (gas_is_limited && increase) // if gas is limited we do not want to increase
break;
auto gradient = state.calcGradient(
oil_rate, new_oil_rate, gas_rate, new_gas_rate);
if (state.checkEcoGradient(gradient)) {
if (state.it == 1) {
break;
}
else {
state.stop_iteration = true;
}
}
cur_alq = alq;
success = true;
oil_rate = new_oil_rate;
gas_rate = new_gas_rate;
}
if (state.it > this->max_iterations_) {
warnMaxIterationsExceeded_();
}
if (success) {
this->potentials_ = cur_potentials;
this->new_alq_ = cur_alq;
}
return success;
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
setAlqMaxRate_(const GasLiftOpt::Well &well)
{
auto& max_alq_optional = well.max_rate();
if (max_alq_optional) {
// NOTE: To prevent extrapolation of the VFP tables, any value
// entered here must not exceed the largest ALQ value in the well's VFP table.
this->max_alq_ = *max_alq_optional;
}
else { // i.e. WLIFTOPT, item 3 has been defaulted
// According to the Eclipse manual for WLIFTOPT, item 3:
// The default value should be set to the largest ALQ
// value in the well's VFP table
const auto& table = std_well_.vfp_properties_->getProd()->getTable(
this->controls_.vfp_table_number);
const auto& alq_values = table.getALQAxis();
// Assume the alq_values are sorted in ascending order, so
// the last item should be the largest value:
this->max_alq_ = alq_values.back();
}
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
setAlqMinRate_(const GasLiftOpt::Well &well)
{
// NOTE: According to WLIFTOPT item 5 :
// if min_rate() is negative, it means: allocate at least enough lift gas
// to enable the well to flow
// NOTE: "to enable the well to flow" : How to interpret this?
// We choose to interpret it to mean a positive oil rate as returned from
//
// computeWellRates_(bhp, cur_potentials);
//
// So even if the well is producing gas, if the oil rate is zero
// we say that the "well is not flowing".
//
// Note that if WECON item 2 is set, the well can be shut off
// before the flow rate reaches zero. Also,
// if bhp drops below the bhp lower limit, the well might switch to bhp
// control before the oil rate becomes zero.
this->min_alq_ = well.min_rate();
if (this->min_alq_ > 0) {
if (this->min_alq_ >= this->max_alq_) {
// NOTE: We reset the value to a negative value.
// negative value means: Allocate at least enough lift gas
// to allow the well to flow.
// TODO: Consider other options for resetting the value..
this->min_alq_ = -1;
displayWarning_("Minimum ALQ value is larger than maximum ALQ value!"
" Resetting value.");
}
}
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
tryDecreaseLiftGas_()
{
return runOptimizeLoop_(/*increase=*/ false);
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
tryIncreaseLiftGas_()
{
return runOptimizeLoop_(/*increase=*/ true);
}
// Called when we should use a fixed ALQ value
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
updateWellStateAlqFixedValue_(const GasLiftOpt::Well &well)
{
auto& max_alq_optional = well.max_rate();
if (max_alq_optional) {
// According to WLIFTOPT, item 3:
// If item 2 is NO, then item 3 is regarded as the fixed
// lift gas injection rate for the well.
auto new_alq = *max_alq_optional;
this->well_state_.setALQ(this->well_name_, new_alq);
}
// else {
// // If item 3 is defaulted, the lift gas rate remains
// // unchanged at its current value.
//}
}
// Determine if we should use a fixed ALQ value.
//
// From the manual for WLIFTOPT, item 2:
// Is the well's lift gas injection rate to be calculated by the
// optimization facility?
// - YES : The well's lift gas injection rate is calculated by the
// optimization facility.
// - NO : The well's lift gas injection rate remains fixed at a
// value that can be set either in Item 3 of this keyword, or in
// Item 12 of keyword WCONPROD, or with keyword WELTARG.
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::
useFixedAlq_(const GasLiftOpt::Well &well)
{
auto wliftopt_item2 = well.use_glo();
if (wliftopt_item2) {
return false;
}
else {
// auto& max_alq_optional = well.max_rate();
// if (max_alq_optional) {
// According to WLIFTOPT, item 3:
// If item 2 is NO, then item 3 is regarded as the fixed
// lift gas injection rate for the well.
// }
// else {
// If item 3 is defaulted, the lift gas rate remains
// unchanged at its current value.
// }
return true;
}
}
template<typename TypeTag>
void
Opm::GasLiftRuntime<TypeTag>::
warnMaxIterationsExceeded_()
{
std::ostringstream ss;
ss << "Max iterations (" << this->max_iterations_ << ") exceeded in "
<< "gas lift optimization for well " << this->well_name_;
deferred_logger_.warning("MAX_ITERATIONS_EXCEEDED", ss.str());
}
/****************************************
* Methods declared in OptimizeState
****************************************/
template<typename TypeTag>
double
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
addOrSubtractAlqIncrement(double alq)
{
if (this->increase) {
alq += this->parent.increment_;
// NOTE: if max_alq_ was defaulted in WCONPROD, item 3, it has
// already been set to the largest value in the VFP table in
// the contructor of GasLiftRuntime
if (alq > this->parent.max_alq_) alq = this->parent.max_alq_;
}
else {
alq -= this->parent.increment_;
if (this->parent.min_alq_ > 0) {
if (alq < this->parent.min_alq_) alq = this->parent.min_alq_;
}
}
return alq;
}
template<typename TypeTag>
double
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
calcGradient(double oil_rate, double new_oil_rate, double gas_rate, double new_gas_rate)
{
auto dqo = new_oil_rate - oil_rate;
auto dqg = new_gas_rate - gas_rate;
// TODO: Should we do any error checks on the calculation of the
// gradient?
// NOTE: The eclipse techincal description (chapter 25) says:
// "The gas rate term in the denominator is subject to the
// constraint alpha_g_ * dqg >= 0.0"
auto gradient = (this->parent.alpha_w_ * dqo) /
(this->parent.increment_ + this->parent.alpha_g_*dqg);
return gradient;
}
// NOTE: According to WLIFTOPT item 5 :
// if min_rate() is negative, it means: allocate at least enough lift gas
// to enable the well to flow
// We will interpret this as (see discussion above GasLiftRuntime()
// in this file): Allocate at least the amount of lift gas needed to
// get a positive oil production rate.
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
checkAlqOutsideLimits(double alq, double oil_rate)
{
std::ostringstream ss;
bool result = false;
if (this->increase) {
if (alq >= this->parent.max_alq_) {
ss << "ALQ >= " << this->parent.max_alq_ << " (max limit), "
<< "stopping iteration";
result = true;
}
else {
// NOTE: A negative min_alq_ means: allocate at least enough lift gas
// to enable the well to flow, see WCONPROD item 5.
if (this->parent.min_alq_ < 0) {
result = false;
}
else {
// NOTE: checking for a lower limit should not be necessary
// when increasing alq.. so this is just to catch an
// illegal state at an early point.
if (alq < this->parent.min_alq_ ) {
warn_("unexpected: alq below lower limit when trying to "
"increase lift gas. aborting iteration.");
result = true;
}
else {
result = false;
}
}
}
}
else { // we are decreasing lift gas
// NOTE: A negative min_alq_ means: allocate at least enough lift gas
// to enable the well to flow, see WCONPROD item 5.
if (this->parent.min_alq_ < 0) {
// If the oil rate is already zero or negative (non-flowing well)
// we assume we will not be able to increase it by decreasing the lift gas
if ( oil_rate <= 0 ) {
ss << "Oil rate ( " << oil_rate << " ) <= 0 when decreasing lift gas. "
<< "We will not be able to make this well flowing by decreasing "
<< "lift gas, stopping iteration.";
result = true;
}
else {
result = false;
}
}
else {
if (alq <= this->parent.min_alq_ ) {
ss << "ALQ <= " << this->parent.min_alq_ << " (min limit), "
<< "stopping iteration";
result = true;
}
else {
// NOTE: checking for an upper limit should not be necessary
// when decreasing alq.. so this is just to catch an
// illegal state at an early point.
if (alq >= this->parent.max_alq_) {
warn_( "unexpected: alq above upper limit when trying to "
"decrease lift gas. aborting iteration.");
result = true;
}
else {
result = false;
}
}
}
}
if (this->parent.debug) this->parent.displayDebugMessage_(ss.str());
return result;
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
checkEcoGradient(double gradient)
{
std::ostringstream ss;
bool result = false;
if (this->parent.debug) {
ss << "checking gradient: " << gradient;
}
if (this->increase) {
if (this->parent.debug) ss << " <= " << this->parent.eco_grad_ << " --> ";
if (gradient <= this->parent.eco_grad_) {
if (this->parent.debug) ss << "true";
result = true;
}
else {
if (this->parent.debug) ss << "false";
}
}
else { // decreasing lift gas
if (this->parent.debug) ss << " >= " << this->parent.eco_grad_ << " --> ";
if (gradient >= this->parent.eco_grad_) {
if (this->parent.debug) ss << "true";
result = true;
}
else {
if (this->parent.debug) ss << "false";
}
}
if (this->parent.debug) this->parent.displayDebugMessage_(ss.str());
return result;
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
checkRate(double rate, double limit, const std::string rate_str)
{
if (limit < rate ) {
if (this->parent.debug) {
const std::string msg = fmt::format(
"iteration {} : rate {} exceeds target rate {}. Stopping iteration",
this->it, rate_str, rate, limit);
this->parent.displayDebugMessage_(msg);
}
return true;
}
return false;
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
checkWellRatesViolated(std::vector<double> &potentials)
{
if (this->parent.controls_.hasControl(Well::ProducerCMode::ORAT)) {
auto oil_rate = -potentials[this->parent.oil_pos_];
if (this->checkRate(oil_rate, this->parent.controls_.oil_rate, "oil"))
return true;
}
if (this->parent.controls_.hasControl(Well::ProducerCMode::WRAT)) {
auto water_rate = -potentials[this->parent.water_pos_];
if (this->checkRate(water_rate, this->parent.controls_.water_rate, "water"))
return true;
}
if (this->parent.controls_.hasControl(Well::ProducerCMode::GRAT)) {
auto gas_rate = -potentials[this->parent.gas_pos_];
if (this->checkRate(gas_rate, this->parent.controls_.gas_rate, "gas"))
return true;
}
if (this->parent.controls_.hasControl(Well::ProducerCMode::LRAT)) {
auto oil_rate = -potentials[this->parent.oil_pos_];
auto water_rate = -potentials[this->parent.water_pos_];
auto liq_rate = oil_rate + water_rate;
if (this->checkRate(liq_rate, this->parent.controls_.liquid_rate, "liquid"))
return true;
}
// TODO: Also check RESV, see checkIndividualContraints() in
// WellInterface_impl.hpp
// TODO: Check group contraints?
return false;
}
template<typename TypeTag>
bool
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
computeBhpAtThpLimit(double alq)
{
auto bhp_at_thp_limit = this->parent.std_well_.computeBhpAtThpLimitProdWithAlq(
this->parent.ebos_simulator_,
this->parent.summary_state_,
this->parent.deferred_logger_,
alq);
if (!bhp_at_thp_limit) {
const std::string msg = fmt::format(
"Failed in getting converged bhp potential for well {}",
this->parent.well_name_);
this->parent.deferred_logger_.warning(
"FAILURE_GETTING_CONVERGED_POTENTIAL", msg);
return false;
}
this->bhp = *bhp_at_thp_limit;
return true;
}
// NOTE: When calculating the gradient, determine what the well would produce if
// the lift gas injection rate were increased by one increment. The
// production rates are adjusted if necessary to obey
// any rate or BHP limits that the well may be subject to. From this
// information, calculate the well's "weighted incremental
// gradient"
//
// TODO: What does it mean to "adjust the production rates" given a
// BHP limit?
//
template<typename TypeTag>
double
Opm::GasLiftRuntime<TypeTag>::OptimizeState::
getBhpWithLimit()
{
auto bhp_update = this->bhp;
if (this->parent.controls_.hasControl(Well::ProducerCMode::BHP)) {
auto limit = this->parent.controls_.bhp_limit;
// TODO: is it possible that bhp falls below the limit when
// adding lift gas? I.e. if this->increase == true..
if (this->bhp < limit) {
// TODO: we keep the current alq, but it should probably
// be adjusted since we changed computed bhp. But how?
bhp_update = limit;
// Stop iteration, but first check the economic gradient
// with the bhp_update. If the gradient looks OK (see the
// main optimize loop) we keep the current ALQ value.
this->stop_iteration = true;
}
}
return bhp_update;
}