opm-simulators/opm/autodiff/StandardWell_impl.hpp
Kai Bao 8274fc9275 replacing BlackoilPhases:: with Oil Water Gas in well model
and also WellStateFullyImplicitBlackoil.

There are more places to do so, while it might be easier to create a
header file for this.
2017-11-16 12:08:58 +01:00

2006 lines
79 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
namespace Opm
{
template<typename TypeTag>
StandardWell<TypeTag>::
StandardWell(const Well* well, const int time_step, const Wells* wells, const ModelParameters& param)
: Base(well, time_step, wells, param)
, perf_densities_(number_of_perforations_)
, perf_pressure_diffs_(number_of_perforations_)
, primary_variables_(numWellEq, 0.0)
, primary_variables_evaluation_(numWellEq) // the number of the primary variables
, F0_(numWellEq)
{
duneB_.setBuildMode( OffDiagMatWell::row_wise );
duneC_.setBuildMode( OffDiagMatWell::row_wise );
invDuneD_.setBuildMode( DiagMatWell::row_wise );
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
init(const PhaseUsage* phase_usage_arg,
const std::vector<bool>* active_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells)
{
Base::init(phase_usage_arg, active_arg,
depth_arg, gravity_arg, num_cells);
perf_depth_.resize(number_of_perforations_, 0.);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
perf_depth_[perf] = depth_arg[cell_idx];
}
// setup sparsity pattern for the matrices
//[A C^T [x = [ res
// B D] x_well] res_well]
// set the size of the matrices
invDuneD_.setSize(1, 1, 1);
duneB_.setSize(1, num_cells, number_of_perforations_);
duneC_.setSize(1, num_cells, number_of_perforations_);
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
// Add nonzeros for diagonal
row.insert(row.index());
}
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
for (int perf = 0 ; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
// make the C^T matrix
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
resWell_.resize(1);
// resize temporary class variables
Bx_.resize( duneB_.N() );
invDrw_.resize( invDuneD_.N() );
}
template<typename TypeTag>
void StandardWell<TypeTag>::
initPrimaryVariablesEvaluation() const
{
// TODO: using numComp here is only to make the 2p + dummy phase work
// TODO: in theory, we should use numWellEq here.
// for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) {
for (int eqIdx = 0; eqIdx < numComponents(); ++eqIdx) {
assert( (size_t)eqIdx < primary_variables_.size() );
primary_variables_evaluation_[eqIdx] = 0.0;
primary_variables_evaluation_[eqIdx].setValue(primary_variables_[eqIdx]);
primary_variables_evaluation_[eqIdx].setDerivative(numEq + eqIdx, 1.0);
}
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
getBhp() const
{
const WellControls* wc = well_controls_;
if (well_controls_get_current_type(wc) == BHP) {
EvalWell bhp = 0.0;
const double target_rate = well_controls_get_current_target(wc);
bhp.setValue(target_rate);
return bhp;
} else if (well_controls_get_current_type(wc) == THP) {
const int control = well_controls_get_current(wc);
const Opm::PhaseUsage& pu = phaseUsage();
std::vector<EvalWell> rates(3, 0.0);
if (active()[ Water ]) {
rates[ Water ]= getQs(pu.phase_pos[ Water]);
}
if (active()[ Oil ]) {
rates[ Oil ] = getQs(pu.phase_pos[ Oil ]);
}
if (active()[ Gas ]) {
rates[ Gas ] = getQs(pu.phase_pos[ Gas ]);
}
return calculateBhpFromThp(rates, control);
}
return primary_variables_evaluation_[XvarWell];
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
getQs(const int comp_idx) const // TODO: phase or component?
{
EvalWell qs = 0.0;
const WellControls* wc = well_controls_;
const int np = number_of_phases_;
const double target_rate = well_controls_get_current_target(wc);
assert(comp_idx < numComponents());
const auto pu = phaseUsage();
// TODO: the formulation for the injectors decides it only work with single phase
// surface rate injection control. Improvement will be required.
if (well_type_ == INJECTOR) {
if (has_solvent) {
// TODO: investigate whether the use of the comp_frac is justified.
// The usage of the comp_frac is not correct, which should be changed later.
double comp_frac = 0.0;
if (has_solvent && comp_idx == contiSolventEqIdx) { // solvent
comp_frac = comp_frac_[pu.phase_pos[ Gas ]] * wsolvent();
} else if (comp_idx == pu.phase_pos[ Gas ]) {
comp_frac = comp_frac_[comp_idx] * (1.0 - wsolvent());
} else {
comp_frac = comp_frac_[comp_idx];
}
if (comp_frac == 0.0) {
return qs; //zero
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return comp_frac * primary_variables_evaluation_[XvarWell];
}
qs.setValue(comp_frac * target_rate);
return qs;
}
const double comp_frac = comp_frac_[comp_idx];
if (comp_frac == 0.0) {
return qs;
}
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
return primary_variables_evaluation_[XvarWell];
}
qs.setValue(target_rate);
return qs;
}
// Producers
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
return primary_variables_evaluation_[XvarWell] * wellVolumeFractionScaled(comp_idx);
}
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
// checking how many phases are included in the rate control
// to decide wheter it is a single phase rate control or not
const double* distr = well_controls_get_current_distr(wc);
int num_phases_under_rate_control = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
num_phases_under_rate_control += 1;
}
}
// there should be at least one phase involved
assert(num_phases_under_rate_control > 0);
// when it is a single phase rate limit
if (num_phases_under_rate_control == 1) {
// looking for the phase under control
int phase_under_control = -1;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
phase_under_control = phase;
break;
}
}
assert(phase_under_control >= 0);
EvalWell wellVolumeFractionScaledPhaseUnderControl = wellVolumeFractionScaled(phase_under_control);
if (has_solvent && phase_under_control == Gas) {
// for GRAT controlled wells solvent is included in the target
wellVolumeFractionScaledPhaseUnderControl += wellVolumeFractionScaled(contiSolventEqIdx);
}
if (comp_idx == phase_under_control) {
if (has_solvent && phase_under_control == Gas) {
qs.setValue(target_rate * wellVolumeFractionScaled(Gas).value() / wellVolumeFractionScaledPhaseUnderControl.value() );
return qs;
}
qs.setValue(target_rate);
return qs;
}
// TODO: not sure why the single phase under control will have near zero fraction
const double eps = 1e-6;
if (wellVolumeFractionScaledPhaseUnderControl < eps) {
return qs;
}
return (target_rate * wellVolumeFractionScaled(comp_idx) / wellVolumeFractionScaledPhaseUnderControl);
}
// when it is a combined two phase rate limit, such like LRAT
// we neec to calculate the rate for the certain phase
if (num_phases_under_rate_control == 2) {
EvalWell combined_volume_fraction = 0.;
for (int p = 0; p < np; ++p) {
if (distr[p] == 1.0) {
combined_volume_fraction += wellVolumeFractionScaled(p);
}
}
return (target_rate * wellVolumeFractionScaled(comp_idx) / combined_volume_fraction);
}
// TODO: three phase surface rate control is not tested yet
if (num_phases_under_rate_control == 3) {
return target_rate * wellSurfaceVolumeFraction(comp_idx);
}
} else if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
// ReservoirRate
return target_rate * wellVolumeFractionScaled(comp_idx);
} else {
OPM_THROW(std::logic_error, "Unknown control type for well " << name());
}
// avoid warning of condition reaches end of non-void function
return qs;
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
wellVolumeFractionScaled(const int compIdx) const
{
const double scal = scalingFactor(compIdx);
if (scal > 0)
return wellVolumeFraction(compIdx) / scal;
// the scaling factor may be zero for RESV controlled wells.
return wellVolumeFraction(compIdx);
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
wellVolumeFraction(const int compIdx) const
{
const auto& pu = phaseUsage();
if (active()[Water] && compIdx == pu.phase_pos[Water]) {
return primary_variables_evaluation_[WFrac];
}
if (active()[Gas] && compIdx == pu.phase_pos[Gas]) {
return primary_variables_evaluation_[GFrac];
}
if (has_solvent && compIdx == contiSolventEqIdx) {
return primary_variables_evaluation_[SFrac];
}
// Oil fraction
EvalWell well_fraction = 1.0;
if (active()[Water]) {
well_fraction -= primary_variables_evaluation_[WFrac];
}
if (active()[Gas]) {
well_fraction -= primary_variables_evaluation_[GFrac];
}
if (has_solvent) {
well_fraction -= primary_variables_evaluation_[SFrac];
}
return well_fraction;
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
wellSurfaceVolumeFraction(const int compIdx) const
{
EvalWell sum_volume_fraction_scaled = 0.;
const int numComp = numComponents();
for (int idx = 0; idx < numComp; ++idx) {
sum_volume_fraction_scaled += wellVolumeFractionScaled(idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return wellVolumeFractionScaled(compIdx) / sum_volume_fraction_scaled;
}
template<typename TypeTag>
typename StandardWell<TypeTag>::EvalWell
StandardWell<TypeTag>::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
out.setDerivative(eqIdx, in.derivative(eqIdx));
}
return out;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computePerfRate(const IntensiveQuantities& intQuants,
const std::vector<EvalWell>& mob_perfcells_dense,
const double Tw, const EvalWell& bhp, const double& cdp,
const bool& allow_cf, std::vector<EvalWell>& cq_s) const
{
const Opm::PhaseUsage& pu = phaseUsage();
const int np = number_of_phases_;
const int numComp = numComponents();
std::vector<EvalWell> cmix_s(numComp,0.0);
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
cmix_s[componentIdx] = wellSurfaceVolumeFraction(componentIdx);
}
const auto& fs = intQuants.fluidState();
const EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
const EvalWell rs = extendEval(fs.Rs());
const EvalWell rv = extendEval(fs.Rv());
std::vector<EvalWell> b_perfcells_dense(numComp, 0.0);
for (int phase = 0; phase < np; ++phase) {
const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
}
if (has_solvent) {
b_perfcells_dense[contiSolventEqIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
}
// Pressure drawdown (also used to determine direction of flow)
const EvalWell well_pressure = bhp + cdp;
const EvalWell drawdown = pressure - well_pressure;
// producing perforations
if ( drawdown.value() > 0 ) {
//Do nothing if crossflow is not allowed
if (!allow_cf && well_type_ == INJECTOR) {
return;
}
// compute component volumetric rates at standard conditions
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
const EvalWell cq_p = - Tw * (mob_perfcells_dense[componentIdx] * drawdown);
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
}
if (active()[Oil] && active()[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const EvalWell cq_sOil = cq_s[oilpos];
const EvalWell cq_sGas = cq_s[gaspos];
cq_s[gaspos] += rs * cq_sOil;
cq_s[oilpos] += rv * cq_sGas;
}
} else {
//Do nothing if crossflow is not allowed
if (!allow_cf && well_type_ == PRODUCER) {
return;
}
// Using total mobilities
EvalWell total_mob_dense = mob_perfcells_dense[0];
for (int componentIdx = 1; componentIdx < numComp; ++componentIdx) {
total_mob_dense += mob_perfcells_dense[componentIdx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
// compute volume ratio between connection at standard conditions
EvalWell volumeRatio = 0.0;
if (active()[Water]) {
const int watpos = pu.phase_pos[Water];
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
}
if (has_solvent) {
volumeRatio += cmix_s[contiSolventEqIdx] / b_perfcells_dense[contiSolventEqIdx];
}
if (active()[Oil] && active()[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
// Incorporate RS/RV factors if both oil and gas active
const EvalWell d = 1.0 - rv * rs;
if (d.value() == 0.0) {
OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv);
}
const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d;
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
volumeRatio += tmp_oil / b_perfcells_dense[oilpos];
const EvalWell tmp_gas = (cmix_s[gaspos] - rs * cmix_s[oilpos]) / d;
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
volumeRatio += tmp_gas / b_perfcells_dense[gaspos];
}
else {
if (active()[Oil]) {
const int oilpos = pu.phase_pos[Oil];
volumeRatio += cmix_s[oilpos] / b_perfcells_dense[oilpos];
}
if (active()[Gas]) {
const int gaspos = pu.phase_pos[Gas];
volumeRatio += cmix_s[gaspos] / b_perfcells_dense[gaspos];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i/volumeRatio;
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is; // * b_perfcells_dense[phase];
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells)
{
const int numComp = numComponents();
const int np = number_of_phases_;
// clear all entries
if (!only_wells) {
duneB_ = 0.0;
duneC_ = 0.0;
}
invDuneD_ = 0.0;
resWell_ = 0.0;
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
// TODO: it probably can be static member for StandardWell
const double volume = 0.002831684659200; // 0.1 cu ft;
const bool allow_cf = crossFlowAllowed(ebosSimulator);
const EvalWell& bhp = getBhp();
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector<EvalWell> cq_s(numComp,0.0);
std::vector<EvalWell> mob(numComp, 0.0);
getMobility(ebosSimulator, perf, mob);
computePerfRate(intQuants, mob, well_index_[perf], bhp, perf_pressure_diffs_[perf], allow_cf, cq_s);
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[componentIdx] * well_efficiency_factor_;
if (!only_wells) {
// subtract sum of component fluxes in the reservoir equation.
// need to consider the efficiency factor
ebosResid[cell_idx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.value();
}
// subtract sum of phase fluxes in the well equations.
resWell_[0][componentIdx] -= cq_s_effective.value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneC_[0][cell_idx][pvIdx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
}
invDuneD_[0][0][componentIdx][pvIdx] -= cq_s_effective.derivative(pvIdx+numEq);
}
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(componentIdx)][pvIdx] -= cq_s_effective.derivative(pvIdx);
duneB_[0][cell_idx][componentIdx][pvIdx] -= cq_s_effective.derivative(pvIdx);
}
}
// Store the perforation phase flux for later usage.
if (has_solvent && componentIdx == contiSolventEqIdx) {// if (flowPhaseToEbosCompIdx(componentIdx) == Solvent)
well_state.perfRateSolvent()[first_perf_ + perf] = cq_s[componentIdx].value();
} else {
well_state.perfPhaseRates()[(first_perf_ + perf) * np + componentIdx] = cq_s[componentIdx].value();
}
}
if (has_polymer) {
EvalWell cq_s_poly = cq_s[Water];
if (well_type_ == INJECTOR) {
cq_s_poly *= wpolymer();
} else {
cq_s_poly *= extendEval(intQuants.polymerConcentration() * intQuants.polymerViscosityCorrection());
}
if (!only_wells) {
// TODO: we need to consider the efficiency here.
for (int pvIdx = 0; pvIdx < numEq; ++pvIdx) {
ebosJac[cell_idx][cell_idx][contiPolymerEqIdx][pvIdx] -= cq_s_poly.derivative(pvIdx);
}
ebosResid[cell_idx][contiPolymerEqIdx] -= cq_s_poly.value();
}
}
// Store the perforation pressure for later usage.
well_state.perfPress()[first_perf_ + perf] = well_state.bhp()[index_of_well_] + perf_pressure_diffs_[perf];
}
// add vol * dF/dt + Q to the well equations;
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
EvalWell resWell_loc = (wellSurfaceVolumeFraction(componentIdx) - F0_[componentIdx]) * volume / dt;
resWell_loc += getQs(componentIdx) * well_efficiency_factor_;
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
invDuneD_[0][0][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
}
resWell_[0][componentIdx] += resWell_loc.value();
}
// do the local inversion of D.
invDuneD_[0][0].invert();
}
template<typename TypeTag>
bool
StandardWell<TypeTag>::
crossFlowAllowed(const Simulator& ebosSimulator) const
{
if (getAllowCrossFlow()) {
return true;
}
// TODO: investigate the justification of the following situation
// check for special case where all perforations have cross flow
// then the wells must allow for cross flow
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
EvalWell bhp = getBhp();
// Pressure drawdown (also used to determine direction of flow)
EvalWell well_pressure = bhp + perf_pressure_diffs_[perf];
EvalWell drawdown = pressure - well_pressure;
if (drawdown.value() < 0 && well_type_ == INJECTOR) {
return false;
}
if (drawdown.value() > 0 && well_type_ == PRODUCER) {
return false;
}
}
return true;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector<EvalWell>& mob) const
{
const int np = number_of_phases_;
const int cell_idx = well_cells_[perf];
assert (int(mob.size()) == numComponents());
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
}
if (has_solvent) {
mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
}
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx));
}
// this may not work if viscosity and relperms has been modified?
if (has_solvent) {
OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent");
}
}
// modify the water mobility if polymer is present
if (has_polymer) {
// assume fully mixture for wells.
EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration());
if (well_type_ == INJECTOR) {
const auto& viscosityMultiplier = PolymerModule::plyviscViscosityMultiplierTable(intQuants.pvtRegionIndex());
mob[ Water ] /= (extendEval(intQuants.waterViscosityCorrection()) * viscosityMultiplier.eval(polymerConcentration, /*extrapolate=*/true) );
}
if (PolymerModule::hasPlyshlog()) {
// compute the well water velocity with out shear effects.
const int numComp = numComponents();
const bool allow_cf = crossFlowAllowed(ebosSimulator);
const EvalWell& bhp = getBhp();
std::vector<EvalWell> cq_s(numComp,0.0);
computePerfRate(intQuants, mob, well_index_[perf], bhp, perf_pressure_diffs_[perf], allow_cf, cq_s);
// TODO: make area a member
double area = 2 * M_PI * perf_rep_radius_[perf] * perf_length_[perf];
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
const auto& scaledDrainageInfo =
materialLawManager->oilWaterScaledEpsInfoDrainage(cell_idx);
const Scalar& Swcr = scaledDrainageInfo.Swcr;
const EvalWell poro = extendEval(intQuants.porosity());
const EvalWell Sw = extendEval(intQuants.fluidState().saturation(flowPhaseToEbosPhaseIdx(Water)));
// guard against zero porosity and no water
const EvalWell denom = Opm::max( (area * poro * (Sw - Swcr)), 1e-12);
EvalWell waterVelocity = cq_s[ Water ] / denom * extendEval(intQuants.fluidState().invB(flowPhaseToEbosPhaseIdx(Water)));
if (PolymerModule::hasShrate()) {
// TODO Use the same conversion as for the reservoar equations.
// Need the "permeability" of the well?
// For now use the same formula as in legacy.
waterVelocity *= PolymerModule::shrate( intQuants.pvtRegionIndex() ) / bore_diameters_[perf];
}
EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration());
EvalWell shearFactor = PolymerModule::computeShearFactor(polymerConcentration,
intQuants.pvtRegionIndex(),
waterVelocity);
// modify the mobility with the shear factor and recompute the well fluxes.
mob[ Water ] /= shearFactor;
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateWellState(const BVectorWell& dwells,
WellState& well_state) const
{
const int np = number_of_phases_;
const double dBHPLimit = param_.dbhp_max_rel_;
const double dFLimit = param_.dwell_fraction_max_;
const auto pu = phaseUsage();
const std::vector<double> xvar_well_old = primary_variables_;
// update the second and third well variable (The flux fractions)
std::vector<double> F(np,0.0);
if (active()[ Water ]) {
const int sign2 = dwells[0][WFrac] > 0 ? 1: -1;
const double dx2_limited = sign2 * std::min(std::abs(dwells[0][WFrac]),dFLimit);
primary_variables_[WFrac] = xvar_well_old[WFrac] - dx2_limited;
}
if (active()[ Gas ]) {
const int sign3 = dwells[0][GFrac] > 0 ? 1: -1;
const double dx3_limited = sign3 * std::min(std::abs(dwells[0][GFrac]),dFLimit);
primary_variables_[GFrac] = xvar_well_old[GFrac] - dx3_limited;
}
if (has_solvent) {
const int sign4 = dwells[0][SFrac] > 0 ? 1: -1;
const double dx4_limited = sign4 * std::min(std::abs(dwells[0][SFrac]),dFLimit);
primary_variables_[SFrac] = xvar_well_old[SFrac] - dx4_limited;
}
assert(active()[ Oil ]);
F[pu.phase_pos[Oil]] = 1.0;
if (active()[ Water ]) {
F[pu.phase_pos[Water]] = primary_variables_[WFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Water]];
}
if (active()[ Gas ]) {
F[pu.phase_pos[Gas]] = primary_variables_[GFrac];
F[pu.phase_pos[Oil]] -= F[pu.phase_pos[Gas]];
}
double F_solvent = 0.0;
if (has_solvent) {
F_solvent = primary_variables_[SFrac];
F[pu.phase_pos[Oil]] -= F_solvent;
}
if (active()[ Water ]) {
if (F[Water] < 0.0) {
if (active()[ Gas ]) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Water]]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Water]]);
}
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Water]]);
F[pu.phase_pos[Water]] = 0.0;
}
}
if (active()[ Gas ]) {
if (F[pu.phase_pos[Gas]] < 0.0) {
if (active()[ Water ]) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Gas]]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Gas]]);
}
F[pu.phase_pos[Oil]] /= (1.0 - F[pu.phase_pos[Gas]]);
F[pu.phase_pos[Gas]] = 0.0;
}
}
if (F[pu.phase_pos[Oil]] < 0.0) {
if (active()[ Water ]) {
F[pu.phase_pos[Water]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if (active()[ Gas ]) {
F[pu.phase_pos[Gas]] /= (1.0 - F[pu.phase_pos[Oil]]);
}
if (has_solvent) {
F_solvent /= (1.0 - F[pu.phase_pos[Oil]]);
}
F[pu.phase_pos[Oil]] = 0.0;
}
if (active()[ Water ]) {
primary_variables_[WFrac] = F[pu.phase_pos[Water]];
}
if (active()[ Gas ]) {
primary_variables_[GFrac] = F[pu.phase_pos[Gas]];
}
if(has_solvent) {
primary_variables_[SFrac] = F_solvent;
}
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
// More testing is needed to make sure this is correct for well groups and THP.
if (has_solvent){
F[pu.phase_pos[Gas]] += F_solvent;
}
// The interpretation of the first well variable depends on the well control
const WellControls* wc = well_controls_;
// TODO: we should only maintain one current control either from the well_state or from well_controls struct.
// Either one can be more favored depending on the final strategy for the initilzation of the well control
const int current = well_state.currentControls()[index_of_well_];
const double target_rate = well_controls_iget_target(wc, current);
for (int p = 0; p < np; ++p) {
const double scal = scalingFactor(p);
if (scal > 0) {
F[p] /= scal ;
} else {
F[p] = 0.;
}
}
switch (well_controls_iget_type(wc, current)) {
case THP: // The BHP and THP both uses the total rate as first well variable.
case BHP:
{
primary_variables_[XvarWell] = xvar_well_old[XvarWell] - dwells[0][XvarWell];
switch (well_type_) {
case INJECTOR:
for (int p = 0; p < np; ++p) {
const double comp_frac = comp_frac_[p];
well_state.wellRates()[index_of_well_ * np + p] = comp_frac * primary_variables_[XvarWell];
}
break;
case PRODUCER:
for (int p = 0; p < np; ++p) {
well_state.wellRates()[index_of_well_ * np + p] = primary_variables_[XvarWell] * F[p];
}
break;
}
if (well_controls_iget_type(wc, current) == THP) {
// Calculate bhp from thp control and well rates
std::vector<double> rates(3, 0.0); // the vfp related only supports three phases for the moment
const Opm::PhaseUsage& pu = phaseUsage();
if (active()[ Water ]) {
rates[ Water ] = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Water ] ];
}
if (active()[ Oil ]) {
rates[ Oil ]= well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
}
if (active()[ Gas ]) {
rates[ Gas ]= well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Gas ] ];
}
well_state.bhp()[index_of_well_] = calculateBhpFromThp(rates, current);
}
}
break;
case SURFACE_RATE: // Both rate controls use bhp as first well variable
case RESERVOIR_RATE:
{
const int sign1 = dwells[0][XvarWell] > 0 ? 1: -1;
const double dx1_limited = sign1 * std::min(std::abs(dwells[0][XvarWell]),std::abs(xvar_well_old[XvarWell])*dBHPLimit);
primary_variables_[XvarWell] = std::max(xvar_well_old[XvarWell] - dx1_limited,1e5);
well_state.bhp()[index_of_well_] = primary_variables_[XvarWell];
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
if (well_type_ == PRODUCER) {
const double* distr = well_controls_iget_distr(wc, current);
double F_target = 0.0;
for (int p = 0; p < np; ++p) {
F_target += distr[p] * F[p];
}
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np * index_of_well_ + p] = F[p] * target_rate / F_target;
}
} else {
for (int p = 0; p < np; ++p) {
well_state.wellRates()[index_of_well_ * np + p] = comp_frac_[p] * target_rate;
}
}
} else { // RESERVOIR_RATE
for (int p = 0; p < np; ++p) {
well_state.wellRates()[np * index_of_well_ + p] = F[p] * target_rate;
}
}
}
break;
} // end of switch (well_controls_iget_type(wc, current))
// for the wells having a THP constaint, we should update their thp value
// If it is under THP control, it will be set to be the target value. Otherwise,
// the thp value will be calculated based on the bhp value, assuming the bhp value is correctly calculated.
const int nwc = well_controls_get_num(wc);
// Looping over all controls until we find a THP constraint
int ctrl_index = 0;
for ( ; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(wc, ctrl_index) == THP) {
// the current control
const int current = well_state.currentControls()[index_of_well_];
// If under THP control at the moment
if (current == ctrl_index) {
const double thp_target = well_controls_iget_target(wc, current);
well_state.thp()[index_of_well_] = thp_target;
} else { // otherwise we calculate the thp from the bhp value
const Opm::PhaseUsage& pu = phaseUsage();
std::vector<double> rates(3, 0.0);
if (active()[ Water ]) {
rates[ Water ] = well_state.wellRates()[index_of_well_*np + pu.phase_pos[ Water ] ];
}
if (active()[ Oil ]) {
rates[ Oil ] = well_state.wellRates()[index_of_well_*np + pu.phase_pos[ Oil ] ];
}
if (active()[ Gas ]) {
rates[ Gas ] = well_state.wellRates()[index_of_well_*np + pu.phase_pos[ Gas ] ];
}
const double bhp = well_state.bhp()[index_of_well_];
well_state.thp()[index_of_well_] = calculateThpFromBhp(rates, ctrl_index, bhp);
}
// the THP control is found, we leave the loop now
break;
}
} // end of for loop for seaching THP constraints
// no THP constraint found
if (ctrl_index == nwc) { // not finding a THP contstraints
well_state.thp()[index_of_well_] = 0.0;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updateWellStateWithTarget(const int current,
WellState& xw) const
{
// number of phases
const int np = number_of_phases_;
const int well_index = index_of_well_;
const WellControls* wc = well_controls_;
// Updating well state and primary variables.
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(wc, current);
const double* distr = well_controls_iget_distr(wc, current);
switch (well_controls_iget_type(wc, current)) {
case BHP:
xw.bhp()[well_index] = target;
// TODO: similar to the way below to handle THP
// we should not something related to thp here when there is thp constraint
break;
case THP: {
xw.thp()[well_index] = target;
const Opm::PhaseUsage& pu = phaseUsage();
std::vector<double> rates(3, 0.0);
if (active()[ Water ]) {
rates[ Water ] = xw.wellRates()[well_index*np + pu.phase_pos[ Water ] ];
}
if (active()[ Oil ]) {
rates[ Oil ] = xw.wellRates()[well_index*np + pu.phase_pos[ Oil ] ];
}
if (active()[ Gas ]) {
rates[ Gas ] = xw.wellRates()[well_index*np + pu.phase_pos[ Gas ] ];
}
xw.bhp()[well_index] = calculateBhpFromThp(rates, current);
break;
}
case RESERVOIR_RATE: // intentional fall-through
case SURFACE_RATE:
// checking the number of the phases under control
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
assert(numPhasesWithTargetsUnderThisControl > 0);
if (well_type_ == INJECTOR) {
// assign target value as initial guess for injectors
// only handles single phase control at the moment
assert(numPhasesWithTargetsUnderThisControl == 1);
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.) {
xw.wellRates()[np*well_index + phase] = target / distr[phase];
} else {
xw.wellRates()[np * well_index + phase] = 0.;
}
}
} else if (well_type_ == PRODUCER) {
// update the rates of phases under control based on the target,
// and also update rates of phases not under control to keep the rate ratio,
// assuming the mobility ratio does not change for the production wells
double original_rates_under_phase_control = 0.0;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
original_rates_under_phase_control += xw.wellRates()[np * well_index + phase] * distr[phase];
}
}
if (original_rates_under_phase_control != 0.0 ) {
double scaling_factor = target / original_rates_under_phase_control;
for (int phase = 0; phase < np; ++phase) {
xw.wellRates()[np * well_index + phase] *= scaling_factor;
}
} else { // scaling factor is not well defied when original_rates_under_phase_control is zero
// separating targets equally between phases under control
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
xw.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase];
} else {
// this only happens for SURFACE_RATE control
xw.wellRates()[np * well_index + phase] = target_rate_divided;
}
}
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
break;
} // end of switch
updatePrimaryVariables(xw);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw,
std::vector<double>& b_perf,
std::vector<double>& rsmax_perf,
std::vector<double>& rvmax_perf,
std::vector<double>& surf_dens_perf) const
{
const int nperf = number_of_perforations_;
// TODO: can make this a member?
const int numComp = numComponents();
const PhaseUsage& pu = phaseUsage();
b_perf.resize(nperf*numComp);
surf_dens_perf.resize(nperf*numComp);
const int w = index_of_well_;
//rs and rv are only used if both oil and gas is present
if (pu.phase_used[Gas] && pu.phase_used[Oil]) {
rsmax_perf.resize(nperf);
rvmax_perf.resize(nperf);
}
// Compute the average pressure in each well block
for (int perf = 0; perf < nperf; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
// TODO: this is another place to show why WellState need to be a vector of WellState.
// TODO: to check why should be perf - 1
const double p_above = perf == 0 ? xw.bhp()[w] : xw.perfPress()[first_perf_ + perf - 1];
const double p_avg = (xw.perfPress()[first_perf_ + perf] + p_above)/2;
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
if (pu.phase_used[Water]) {
b_perf[ pu.phase_pos[Water] + perf * numComp] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
if (pu.phase_used[Gas]) {
const int gaspos = pu.phase_pos[Gas] + perf * numComp;
const int gaspos_well = pu.phase_pos[Gas] + w * pu.num_phases;
if (pu.phase_used[Oil]) {
const int oilpos_well = pu.phase_pos[Oil] + w * pu.num_phases;
const double oilrate = std::abs(xw.wellRates()[oilpos_well]); //in order to handle negative rates in producers
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
if (oilrate > 0) {
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
double rv = 0.0;
if (gasrate > 0) {
rv = oilrate / gasrate;
}
rv = std::min(rv, rvmax_perf[perf]);
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
}
else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
if (pu.phase_used[Oil]) {
const int oilpos = pu.phase_pos[Oil] + perf * numComp;
const int oilpos_well = pu.phase_pos[Oil] + w * pu.num_phases;
if (pu.phase_used[Gas]) {
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
const int gaspos_well = pu.phase_pos[Gas] + w * pu.num_phases;
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
if (gasrate > 0) {
const double oilrate = std::abs(xw.wellRates()[oilpos_well]);
double rs = 0.0;
if (oilrate > 0) {
rs = gasrate / oilrate;
}
rs = std::min(rs, rsmax_perf[perf]);
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
} else {
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
}
}
// Surface density.
for (int p = 0; p < pu.num_phases; ++p) {
surf_dens_perf[numComp*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex());
}
// We use cell values for solvent injector
if (has_solvent) {
b_perf[numComp*perf + contiSolventEqIdx] = intQuants.solventInverseFormationVolumeFactor().value();
surf_dens_perf[numComp*perf + contiSolventEqIdx] = intQuants.solventRefDensity();
}
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeConnectionDensities(const std::vector<double>& perfComponentRates,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf)
{
// Verify that we have consistent input.
const int np = number_of_phases_;
const int nperf = number_of_perforations_;
const int num_comp = numComponents();
const PhaseUsage& phase_usage = phaseUsage();
// 1. Compute the flow (in surface volume units for each
// component) exiting up the wellbore from each perforation,
// taking into account flow from lower in the well, and
// in/out-flow at each perforation.
std::vector<double> q_out_perf(nperf*num_comp);
// TODO: investigate whether we should use the following techniques to calcuate the composition of flows in the wellbore
// Iterate over well perforations from bottom to top.
for (int perf = nperf - 1; perf >= 0; --perf) {
for (int component = 0; component < num_comp; ++component) {
if (perf == nperf - 1) {
// This is the bottom perforation. No flow from below.
q_out_perf[perf*num_comp+ component] = 0.0;
} else {
// Set equal to flow from below.
q_out_perf[perf*num_comp + component] = q_out_perf[(perf+1)*num_comp + component];
}
// Subtract outflow through perforation.
q_out_perf[perf*num_comp + component] -= perfComponentRates[perf*num_comp + component];
}
}
// 2. Compute the component mix at each perforation as the
// absolute values of the surface rates divided by their sum.
// Then compute volume ratios (formation factors) for each perforation.
// Finally compute densities for the segments associated with each perforation.
const int gaspos = phase_usage.phase_pos[Gas];
const int oilpos = phase_usage.phase_pos[Oil];
std::vector<double> mix(num_comp,0.0);
std::vector<double> x(num_comp);
std::vector<double> surf_dens(num_comp);
std::vector<double> dens(nperf);
for (int perf = 0; perf < nperf; ++perf) {
// Find component mix.
const double tot_surf_rate = std::accumulate(q_out_perf.begin() + num_comp*perf,
q_out_perf.begin() + num_comp*(perf+1), 0.0);
if (tot_surf_rate != 0.0) {
for (int component = 0; component < num_comp; ++component) {
mix[component] = std::fabs(q_out_perf[perf*num_comp + component]/tot_surf_rate);
}
} else {
// No flow => use well specified fractions for mix.
for (int phase = 0; phase < np; ++phase) {
mix[phase] = comp_frac_[phase];
}
// intialize 0.0 for comIdx >= np;
}
// Compute volume ratio.
x = mix;
double rs = 0.0;
double rv = 0.0;
if (!rsmax_perf.empty() && mix[oilpos] > 0.0) {
rs = std::min(mix[gaspos]/mix[oilpos], rsmax_perf[perf]);
}
if (!rvmax_perf.empty() && mix[gaspos] > 0.0) {
rv = std::min(mix[oilpos]/mix[gaspos], rvmax_perf[perf]);
}
if (rs != 0.0) {
// Subtract gas in oil from gas mixture
x[gaspos] = (mix[gaspos] - mix[oilpos]*rs)/(1.0 - rs*rv);
}
if (rv != 0.0) {
// Subtract oil in gas from oil mixture
x[oilpos] = (mix[oilpos] - mix[gaspos]*rv)/(1.0 - rs*rv);;
}
double volrat = 0.0;
for (int component = 0; component < num_comp; ++component) {
volrat += x[component] / b_perf[perf*num_comp+ component];
}
for (int component = 0; component < num_comp; ++component) {
surf_dens[component] = surf_dens_perf[perf*num_comp+ component];
}
// Compute segment density.
perf_densities_[perf] = std::inner_product(surf_dens.begin(), surf_dens.end(), mix.begin(), 0.0) / volrat;
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeConnectionPressureDelta()
{
// Algorithm:
// We'll assume the perforations are given in order from top to
// bottom for each well. By top and bottom we do not necessarily
// mean in a geometric sense (depth), but in a topological sense:
// the 'top' perforation is nearest to the surface topologically.
// Our goal is to compute a pressure delta for each perforation.
// 1. Compute pressure differences between perforations.
// dp_perf will contain the pressure difference between a
// perforation and the one above it, except for the first
// perforation for each well, for which it will be the
// difference to the reference (bhp) depth.
const int nperf = number_of_perforations_;
perf_pressure_diffs_.resize(nperf, 0.0);
for (int perf = 0; perf < nperf; ++perf) {
const double z_above = perf == 0 ? ref_depth_ : perf_depth_[perf - 1];
const double dz = perf_depth_[perf] - z_above;
perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * gravity_;
}
// 2. Compute pressure differences to the reference point (bhp) by
// accumulating the already computed adjacent pressure
// differences, storing the result in dp_perf.
// This accumulation must be done per well.
const auto beg = perf_pressure_diffs_.begin();
const auto end = perf_pressure_diffs_.end();
std::partial_sum(beg, end, beg);
}
template<typename TypeTag>
typename StandardWell<TypeTag>::ConvergenceReport
StandardWell<TypeTag>::
getWellConvergence(const std::vector<double>& B_avg) const
{
typedef double Scalar;
typedef std::vector< Scalar > Vector;
const int np = number_of_phases_;
const int numComp = numComponents();
// the following implementation assume that the polymer is always after the w-o-g phases
// For the polymer case, there is one more mass balance equations of reservoir than wells
assert((int(B_avg.size()) == numComp) || has_polymer);
const double tol_wells = param_.tolerance_wells_;
const double maxResidualAllowed = param_.max_residual_allowed_;
// TODO: it should be the number of numWellEq
// using numComp here for flow_ebos running 2p case.
std::vector<Scalar> res(numComp);
for (int comp = 0; comp < numComp; ++comp) {
// magnitude of the residual matters
res[comp] = std::abs(resWell_[0][comp]);
}
Vector well_flux_residual(numComp);
// Finish computation
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
well_flux_residual[compIdx] = B_avg[compIdx] * res[compIdx];
}
ConvergenceReport report;
// checking if any NaN or too large residuals found
// TODO: not understand why phase here while component in other places.
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
if (std::isnan(well_flux_residual[phaseIdx])) {
report.nan_residual_found = true;
const typename ConvergenceReport::ProblemWell problem_well = {name(), phaseName};
report.nan_residual_wells.push_back(problem_well);
} else {
if (well_flux_residual[phaseIdx] > maxResidualAllowed) {
report.too_large_residual_found = true;
const typename ConvergenceReport::ProblemWell problem_well = {name(), phaseName};
report.too_large_residual_wells.push_back(problem_well);
}
}
}
if ( !(report.nan_residual_found || report.too_large_residual_found) ) { // no abnormal residual value found
// check convergence
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
{
report.converged = report.converged && (well_flux_residual[compIdx] < tol_wells);
}
} else { // abnormal values found and no need to check the convergence
report.converged = false;
}
return report;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellConnectionDensitesPressures(const WellState& xw,
const std::vector<double>& b_perf,
const std::vector<double>& rsmax_perf,
const std::vector<double>& rvmax_perf,
const std::vector<double>& surf_dens_perf)
{
// Compute densities
const int nperf = number_of_perforations_;
const int numComponent = numComponents();
const int np = number_of_phases_;
std::vector<double> perfRates(b_perf.size(),0.0);
for (int perf = 0; perf < nperf; ++perf) {
for (int phase = 0; phase < np; ++phase) {
perfRates[perf*numComponent + phase] = xw.perfPhaseRates()[(first_perf_ + perf) * np + phase];
}
if(has_solvent) {
perfRates[perf*numComponent + contiSolventEqIdx] = xw.perfRateSolvent()[first_perf_ + perf];
}
}
computeConnectionDensities(perfRates, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeConnectionPressureDelta();
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& well_state)
{
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
std::vector<double> b_perf;
std::vector<double> rsmax_perf;
std::vector<double> rvmax_perf;
std::vector<double> surf_dens_perf;
computePropertiesForWellConnectionPressures(ebosSimulator, well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
computeWellConnectionDensitesPressures(well_state, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
solveEqAndUpdateWellState(WellState& well_state)
{
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
BVectorWell dx_well(1);
invDuneD_.mv(resWell_, dx_well);
updateWellState(dx_well, well_state);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& well_state)
{
computeWellConnectionPressures(ebosSimulator, well_state);
computeAccumWell();
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeAccumWell()
{
// TODO: it should be num_comp, while it also bring problem for
// the polymer case.
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
F0_[eq_idx] = wellSurfaceVolumeFraction(eq_idx).value();
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
apply(const BVector& x, BVector& Ax) const
{
assert( Bx_.size() == duneB_.N() );
assert( invDrw_.size() == invDuneD_.N() );
// Bx_ = duneB_ * x
duneB_.mv(x, Bx_);
// invDBx = invDuneD_ * Bx_
// TODO: with this, we modified the content of the invDrw_.
// Is it necessary to do this to save some memory?
BVectorWell& invDBx = invDrw_;
invDuneD_.mv(Bx_, invDBx);
// Ax = Ax - duneC_^T * invDBx
duneC_.mmtv(invDBx,Ax);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
apply(BVector& r) const
{
assert( invDrw_.size() == invDuneD_.N() );
// invDrw_ = invDuneD_ * resWell_
invDuneD_.mv(resWell_, invDrw_);
// r = r - duneC_^T * invDrw_
duneC_.mmtv(invDrw_, r);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
{
BVectorWell resWell = resWell_;
// resWell = resWell - B * x
duneB_.mmv(x, resWell);
// xw = D^-1 * resWell
invDuneD_.mv(resWell, xw);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
recoverWellSolutionAndUpdateWellState(const BVector& x,
WellState& well_state) const
{
BVectorWell xw(1);
recoverSolutionWell(x, xw);
updateWellState(xw, well_state);
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellRatesWithBhp(const Simulator& ebosSimulator,
const EvalWell& bhp,
std::vector<double>& well_flux) const
{
const int np = number_of_phases_;
const int numComp = numComponents();
well_flux.resize(np, 0.0);
const bool allow_cf = crossFlowAllowed(ebosSimulator);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const int cell_idx = well_cells_[perf];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
// flux for each perforation
std::vector<EvalWell> cq_s(numComp, 0.0);
std::vector<EvalWell> mob(numComp, 0.0);
getMobility(ebosSimulator, perf, mob);
computePerfRate(intQuants, mob, well_index_[perf], bhp, perf_pressure_diffs_[perf], allow_cf, cq_s);
for(int p = 0; p < np; ++p) {
well_flux[p] += cq_s[p].value();
}
}
}
template<typename TypeTag>
std::vector<double>
StandardWell<TypeTag>::
computeWellPotentialWithTHP(const Simulator& ebosSimulator,
const double initial_bhp, // bhp from BHP constraints
const std::vector<double>& initial_potential) const
{
// TODO: pay attention to the situation that finally the potential is calculated based on the bhp control
// TODO: should we consider the bhp constraints during the iterative process?
const int np = number_of_phases_;
assert( np == int(initial_potential.size()) );
std::vector<double> potentials = initial_potential;
std::vector<double> old_potentials = potentials; // keeping track of the old potentials
double bhp = initial_bhp;
double old_bhp = bhp;
bool converged = false;
const int max_iteration = 1000;
const double bhp_tolerance = 1000.; // 1000 pascal
int iteration = 0;
while ( !converged && iteration < max_iteration ) {
// for each iteration, we calculate the bhp based on the rates/potentials with thp constraints
// with considering the bhp value from the bhp limits. At the beginning of each iteration,
// we initialize the bhp to be the bhp value from the bhp limits. Then based on the bhp values calculated
// from the thp constraints, we decide the effective bhp value for well potential calculation.
bhp = initial_bhp;
// The number of the well controls/constraints
const int nwc = well_controls_get_num(well_controls_);
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(well_controls_, ctrl_index) == THP) {
const Opm::PhaseUsage& pu = phaseUsage();
std::vector<double> rates(3, 0.0);
if (active()[ Water ]) {
rates[ Water ] = potentials[pu.phase_pos[ Water ] ];
}
if (active()[ Oil ]) {
rates[ Oil ] = potentials[pu.phase_pos[ Oil ] ];
}
if (active()[ Gas ]) {
rates[ Gas ] = potentials[pu.phase_pos[ Gas ] ];
}
const double bhp_calculated = calculateBhpFromThp(rates, ctrl_index);
if (well_type_ == INJECTOR && bhp_calculated < bhp ) {
bhp = bhp_calculated;
}
if (well_type_ == PRODUCER && bhp_calculated > bhp) {
bhp = bhp_calculated;
}
}
}
// there should be always some available bhp/thp constraints there
if (std::isinf(bhp) || std::isnan(bhp)) {
OPM_THROW(std::runtime_error, "Unvalid bhp value obtained during the potential calculation for well " << name());
}
converged = std::abs(old_bhp - bhp) < bhp_tolerance;
computeWellRatesWithBhp(ebosSimulator, bhp, potentials);
// checking whether the potentials have valid values
for (const double value : potentials) {
if (std::isinf(value) || std::isnan(value)) {
OPM_THROW(std::runtime_error, "Unvalid potential value obtained during the potential calculation for well " << name());
}
}
if (!converged) {
old_bhp = bhp;
for (int p = 0; p < np; ++p) {
// TODO: improve the interpolation, will it always be valid with the way below?
// TODO: finding better paramters, better iteration strategy for better convergence rate.
const double potential_update_damping_factor = 0.001;
potentials[p] = potential_update_damping_factor * potentials[p] + (1.0 - potential_update_damping_factor) * old_potentials[p];
old_potentials[p] = potentials[p];
}
}
++iteration;
}
if (!converged) {
OPM_THROW(std::runtime_error, "Failed in getting converged for the potential calculation for well " << name());
}
return potentials;
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials) // const
{
updatePrimaryVariables(well_state);
computeWellConnectionPressures(ebosSimulator, well_state);
// initialize the primary variables in Evaluation, which is used in computePerfRate for computeWellPotentials
// TODO: for computeWellPotentials, no derivative is required actually
initPrimaryVariablesEvaluation();
const int np = number_of_phases_;
well_potentials.resize(np, 0.0);
// get the bhp value based on the bhp constraints
const double bhp = mostStrictBhpFromBhpLimits();
// does the well have a THP related constraint?
if ( !wellHasTHPConstraints() ) {
assert(std::abs(bhp) != std::numeric_limits<double>::max());
computeWellRatesWithBhp(ebosSimulator, bhp, well_potentials);
} else {
// the well has a THP related constraint
// checking whether a well is newly added, it only happens at the beginning of the report step
if ( !well_state.isNewWell(index_of_well_) ) {
for (int p = 0; p < np; ++p) {
// This is dangerous for new added well
// since we are not handling the initialization correctly for now
well_potentials[p] = well_state.wellRates()[index_of_well_ * np + p];
}
} else {
// We need to generate a reasonable rates to start the iteration process
computeWellRatesWithBhp(ebosSimulator, bhp, well_potentials);
for (double& value : well_potentials) {
// make the value a little safer in case the BHP limits are default ones
// TODO: a better way should be a better rescaling based on the investigation of the VFP table.
const double rate_safety_scaling_factor = 0.00001;
value *= rate_safety_scaling_factor;
}
}
well_potentials = computeWellPotentialWithTHP(ebosSimulator, bhp, well_potentials);
}
}
template<typename TypeTag>
void
StandardWell<TypeTag>::
updatePrimaryVariables(const WellState& well_state) const
{
const int np = number_of_phases_;
const int well_index = index_of_well_;
const WellControls* wc = well_controls_;
const double* distr = well_controls_get_current_distr(wc);
const auto pu = phaseUsage();
switch (well_controls_get_current_type(wc)) {
case THP:
case BHP: {
primary_variables_[XvarWell] = 0.0;
if (well_type_ == INJECTOR) {
for (int p = 0; p < np; ++p) {
primary_variables_[XvarWell] += well_state.wellRates()[np*well_index + p] * comp_frac_[p];
}
} else {
for (int p = 0; p < np; ++p) {
primary_variables_[XvarWell] += scalingFactor(p) * well_state.wellRates()[np*well_index + p];
}
}
break;
}
case RESERVOIR_RATE: // Intentional fall-through
case SURFACE_RATE:
primary_variables_[XvarWell] = well_state.bhp()[well_index];
break;
} // end of switch
double tot_well_rate = 0.0;
for (int p = 0; p < np; ++p) {
tot_well_rate += scalingFactor(p) * well_state.wellRates()[np*well_index + p];
}
if(std::abs(tot_well_rate) > 0) {
if (active()[ Water ]) {
primary_variables_[WFrac] = scalingFactor(pu.phase_pos[Water]) * well_state.wellRates()[np*well_index + pu.phase_pos[Water]] / tot_well_rate;
}
if (active()[ Gas ]) {
primary_variables_[GFrac] = scalingFactor(pu.phase_pos[Gas]) * (well_state.wellRates()[np*well_index + pu.phase_pos[Gas]] - well_state.solventWellRate(well_index)) / tot_well_rate ;
}
if (has_solvent) {
primary_variables_[SFrac] = scalingFactor(pu.phase_pos[Gas]) * well_state.solventWellRate(well_index) / tot_well_rate ;
}
} else { // tot_well_rate == 0
if (well_type_ == INJECTOR) {
// only single phase injection handled
if (active()[Water]) {
if (distr[Water] > 0.0) {
primary_variables_[WFrac] = 1.0;
} else {
primary_variables_[WFrac] = 0.0;
}
}
if (active()[Gas]) {
if (distr[pu.phase_pos[Gas]] > 0.0) {
primary_variables_[GFrac] = 1.0 - wsolvent();
if (has_solvent) {
primary_variables_[SFrac] = wsolvent();
}
} else {
primary_variables_[GFrac] = 0.0;
}
}
// TODO: it is possible to leave injector as a oil well,
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
// this will happen.
} else if (well_type_ == PRODUCER) { // producers
// TODO: the following are not addressed for the solvent case yet
if (active()[Water]) {
primary_variables_[WFrac] = 1.0 / np;
}
if (active()[Gas]) {
primary_variables_[GFrac] = 1.0 / np;
}
} else {
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
}
}
}
template<typename TypeTag>
template<class ValueType>
ValueType
StandardWell<TypeTag>::
calculateBhpFromThp(const std::vector<ValueType>& rates,
const int control_index) const
{
// TODO: when well is under THP control, the BHP is dependent on the rates,
// the well rates is also dependent on the BHP, so it might need to do some iteration.
// However, when group control is involved, change of the rates might impacts other wells
// so iterations on a higher level will be required. Some investigation might be needed when
// we face problems under THP control.
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
const ValueType aqua = rates[Water];
const ValueType liquid = rates[Oil];
const ValueType vapour = rates[Gas];
const int vfp = well_controls_iget_vfp(well_controls_, control_index);
const double& thp = well_controls_iget_target(well_controls_, control_index);
const double& alq = well_controls_iget_alq(well_controls_, control_index);
// pick the density in the top layer
const double rho = perf_densities_[0];
ValueType bhp = 0.;
if (well_type_ == INJECTOR) {
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(vfp)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
bhp = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
}
else if (well_type_ == PRODUCER) {
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(vfp)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
bhp = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
return bhp;
}
template<typename TypeTag>
double
StandardWell<TypeTag>::
calculateThpFromBhp(const std::vector<double>& rates,
const int control_index,
const double bhp) const
{
assert(int(rates.size()) == 3); // the vfp related only supports three phases now.
const double aqua = rates[Water];
const double liquid = rates[Oil];
const double vapour = rates[Gas];
const int vfp = well_controls_iget_vfp(well_controls_, control_index);
const double& alq = well_controls_iget_alq(well_controls_, control_index);
// pick the density in the top layer
const double rho = perf_densities_[0];
double thp = 0.0;
if (well_type_ == INJECTOR) {
const double vfp_ref_depth = vfp_properties_->getInj()->getTable(vfp)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
thp = vfp_properties_->getInj()->thp(vfp, aqua, liquid, vapour, bhp + dp);
}
else if (well_type_ == PRODUCER) {
const double vfp_ref_depth = vfp_properties_->getProd()->getTable(vfp)->getDatumDepth();
const double dp = wellhelpers::computeHydrostaticCorrection(ref_depth_, vfp_ref_depth, rho, gravity_);
thp = vfp_properties_->getProd()->thp(vfp, aqua, liquid, vapour, bhp + dp, alq);
}
else {
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
}
return thp;
}
template<typename TypeTag>
double
StandardWell<TypeTag>::scalingFactor(const int phaseIdx) const
{
const WellControls* wc = well_controls_;
const double* distr = well_controls_get_current_distr(wc);
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
if (has_solvent && phaseIdx == contiSolventEqIdx )
OPM_THROW(std::runtime_error, "RESERVOIR_RATE control in combination with solvent is not implemented");
return distr[phaseIdx];
}
const auto& pu = phaseUsage();
if (active()[Water] && pu.phase_pos[Water] == phaseIdx)
return 1.0;
if (active()[Oil] && pu.phase_pos[Oil] == phaseIdx)
return 1.0;
if (active()[Gas] && pu.phase_pos[Gas] == phaseIdx)
return 0.01;
if (has_solvent && phaseIdx == contiSolventEqIdx )
return 0.01;
// we should not come this far
assert(false);
return 1.0;
}
}