opm-simulators/opm/autodiff/BlackoilWellModel.hpp
Atgeirr Flø Rasmussen 258c019989
Merge pull request #1617 from andlaus/sparse_matrix_abstraction
Sparse matrix abstraction
2018-11-14 16:14:00 +01:00

420 lines
15 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#define OPM_BLACKOILWELLMODEL_HEADER_INCLUDED
#include <ebos/eclproblem.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/utility/platform_dependent/disable_warnings.h>
#include <opm/common/utility/platform_dependent/reenable_warnings.h>
#include <cassert>
#include <tuple>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/WellTestState.hpp>
#include <opm/core/wells.h>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/core/wells/WellCollection.hpp>
#include <opm/core/simulator/SimulatorReport.hpp>
#include <opm/autodiff/VFPInjProperties.hpp>
#include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/autodiff/BlackoilDetails.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/WellInterface.hpp>
#include <opm/autodiff/StandardWell.hpp>
#include <opm/autodiff/MultisegmentWell.hpp>
#include <opm/autodiff/Compat.hpp>
#include <opm/simulators/timestepping/gatherConvergenceReport.hpp>
#include<opm/autodiff/SimFIBODetails.hpp>
#include<dune/common/fmatrix.hh>
#include<dune/istl/bcrsmatrix.hh>
#include<dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/simulators/WellSwitchingLogger.hpp>
BEGIN_PROPERTIES
NEW_PROP_TAG(EnableTerminalOutput);
END_PROPERTIES
namespace Opm {
/// Class for handling the blackoil well model.
template<typename TypeTag>
class BlackoilWellModel : public Ewoms::BaseAuxiliaryModule<TypeTag>
{
public:
// --------- Types ---------
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilModelParametersEbos<TypeTag> ModelParameters;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, GlobalEqVector) GlobalEqVector;
typedef typename GET_PROP_TYPE(TypeTag, SparseMatrixAdapter) SparseMatrixAdapter;
typedef typename Ewoms::BaseAuxiliaryModule<TypeTag>::NeighborSet NeighborSet;
static const int numEq = Indices::numEq;
static const int solventSaturationIdx = Indices::solventSaturationIdx;
// TODO: where we should put these types, WellInterface or Well Model?
// or there is some other strategy, like TypeTag
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::BlockVector<VectorBlockType> BVector;
#if DUNE_VERSION_NEWER_REV(DUNE_ISTL, 2 , 5, 1)
// 3x3 matrix block inversion was unstable from at least 2.3 until and
// including 2.5.0
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
#else
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
#endif
typedef typename SparseMatrixAdapter::IstlMatrix Mat;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
// For the conversion between the surface volume rate and resrevoir voidage rate
using RateConverterType = RateConverter::
SurfaceToReservoirVoidage<FluidSystem, std::vector<int> >;
BlackoilWellModel(Simulator& ebosSimulator);
void init(const Opm::EclipseState& eclState, const Opm::Schedule& schedule);
/////////////
// <eWoms auxiliary module stuff>
/////////////
unsigned numDofs() const
// No extra dofs are inserted for wells. (we use a Schur complement.)
{ return 0; }
void addNeighbors(std::vector<NeighborSet>& neighbors) const;
void applyInitial()
{}
void linearize(SparseMatrixAdapter& mat , GlobalEqVector& res);
void postSolve(GlobalEqVector& deltaX)
{
recoverWellSolutionAndUpdateWellState(deltaX);
}
/////////////
// </ eWoms auxiliary module stuff>
/////////////
template <class Restarter>
void deserialize(Restarter& res)
{
// TODO (?)
}
/*!
* \brief This method writes the complete state of the well
* to the harddisk.
*/
template <class Restarter>
void serialize(Restarter& res)
{
// TODO (?)
}
void beginEpisode(const Opm::EclipseState& eclState,
const Opm::Schedule& schedule,
bool isRestart)
{
size_t episodeIdx = ebosSimulator_.episodeIndex();
// beginEpisode in eclProblem advances the episode index
// we don't want this when we are at the beginning of an
// restart.
if (isRestart)
episodeIdx -= 1;
beginReportStep(episodeIdx);
}
void beginTimeStep();
void beginIteration()
{
assemble(ebosSimulator_.model().newtonMethod().numIterations(),
ebosSimulator_.timeStepSize());
}
void endIteration()
{ }
void endTimeStep()
{
timeStepSucceeded(ebosSimulator_.time());
}
void endEpisode()
{
endReportStep();
}
template <class Context>
void computeTotalRatesForDof(RateVector& rate,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const;
void initFromRestartFile(const RestartValue& restartValues);
Opm::data::Wells wellData() const
{ return well_state_.report(phase_usage_, Opm::UgGridHelpers::globalCell(grid())); }
// substract Binv(D)rw from r;
void apply( BVector& r) const;
// subtract B*inv(D)*C * x from A*x
void apply(const BVector& x, BVector& Ax) const;
// apply well model with scaling of alpha
void applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const;
// Check if well equations is converged.
ConvergenceReport getWellConvergence(const std::vector<Scalar>& B_avg) const;
// return all the wells.
const WellCollection& wellCollection() const;
// return non const reference to all the wells.
WellCollection& wellCollection();
// return the internal well state, ignore the passed one.
// Used by the legacy code to make it compatible with the legacy well models.
const WellState& wellState(const WellState& well_state OPM_UNUSED) const;
// return the internal well state
const WellState& wellState() const;
const SimulatorReport& lastReport() const;
void addWellContributions(Mat& mat)
{
for ( const auto& well: well_container_ ) {
well->addWellContributions(mat);
}
}
// called at the beginning of a report step
void beginReportStep(const int time_step);
protected:
void extractLegacyPressure_(std::vector<double>& cellPressure) const
{
size_t nc = number_of_cells_;
std::vector<double> cellPressures(nc, 0.0);
ElementContext elemCtx(ebosSimulator_);
const auto& gridView = ebosSimulator_.vanguard().gridView();
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
cellPressures[cellIdx] = p;
}
}
Simulator& ebosSimulator_;
std::unique_ptr<WellsManager> wells_manager_;
std::vector< const Well* > wells_ecl_;
bool wells_active_;
using WellInterfacePtr = std::unique_ptr<WellInterface<TypeTag> >;
// a vector of all the wells.
std::vector<WellInterfacePtr > well_container_;
// map from logically cartesian cell indices to compressed ones
std::vector<int> cartesian_to_compressed_;
// create the well container
std::vector<WellInterfacePtr > createWellContainer(const int time_step);
WellInterfacePtr createWellForWellTest(const std::string& well_name, const int report_step) const;
WellState well_state_;
WellState previous_well_state_;
const ModelParameters param_;
bool terminal_output_;
bool has_solvent_;
bool has_polymer_;
std::vector<int> pvt_region_idx_;
PhaseUsage phase_usage_;
size_t global_nc_;
// the number of the cells in the local grid
size_t number_of_cells_;
double gravity_;
std::vector<double> depth_;
bool initial_step_;
std::unique_ptr<RateConverterType> rateConverter_;
std::unique_ptr<VFPProperties<VFPInjProperties,VFPProdProperties>> vfp_properties_;
SimulatorReport last_report_;
WellTestState wellTestState_;
// used to better efficiency of calcuation
mutable BVector scaleAddRes_;
const Wells* wells() const { return wells_manager_->c_wells(); }
const Grid& grid() const
{ return ebosSimulator_.vanguard().grid(); }
const EclipseState& eclState() const
{ return ebosSimulator_.vanguard().eclState(); }
const Schedule& schedule() const
{ return ebosSimulator_.vanguard().schedule(); }
// compute the well fluxes and assemble them in to the reservoir equations as source terms
// and in the well equations.
void assemble(const int iterationIdx,
const double dt);
// called at the end of a time step
void timeStepSucceeded(const double& simulationTime);
// called at the end of a report step
void endReportStep();
// using the solution x to recover the solution xw for wells and applying
// xw to update Well State
void recoverWellSolutionAndUpdateWellState(const BVector& x);
void updateWellControls();
void updateGroupControls();
// setting the well_solutions_ based on well_state.
void updatePrimaryVariables();
void setupCartesianToCompressed_(const int* global_cell, int number_of_cells);
void computeRepRadiusPerfLength(const Grid& grid);
void computeAverageFormationFactor(std::vector<double>& B_avg) const;
void applyVREPGroupControl();
void computeWellVoidageRates(std::vector<double>& well_voidage_rates,
std::vector<double>& voidage_conversion_coeffs) const;
// Calculating well potentials for each well
void computeWellPotentials(std::vector<double>& well_potentials);
const std::vector<double>& wellPerfEfficiencyFactors() const;
void calculateEfficiencyFactors();
// it should be able to go to prepareTimeStep(), however, the updateWellControls() and initPrimaryVariablesEvaluation()
// makes it a little more difficult. unless we introduce if (iterationIdx != 0) to avoid doing the above functions
// twice at the beginning of the time step
/// Calculating the explict quantities used in the well calculation. By explicit, we mean they are cacluated
/// at the beginning of the time step and no derivatives are included in these quantities
void calculateExplicitQuantities() const;
SimulatorReport solveWellEq(const double dt);
void initPrimaryVariablesEvaluation() const;
// The number of components in the model.
int numComponents() const;
int numWells() const;
int numPhases() const;
void resetWellControlFromState() const;
void assembleWellEq(const double dt);
// some preparation work, mostly related to group control and RESV,
// at the beginning of each time step (Not report step)
void prepareTimeStep();
void prepareGroupControl();
void computeRESV(const std::size_t step);
void extractLegacyCellPvtRegionIndex_();
void extractLegacyDepth_();
/// return true if wells are available in the reservoir
bool wellsActive() const;
void setWellsActive(const bool wells_active);
/// return true if wells are available on this process
bool localWellsActive() const;
/// upate the wellTestState related to economic limits
void updateWellTestState(const double& simulationTime, WellTestState& wellTestState) const;
void updatePerforationIntensiveQuantities();
void wellTesting(const int timeStepIdx, const double simulationTime);
};
} // namespace Opm
#include "BlackoilWellModel_impl.hpp"
#endif