mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-01 13:29:08 -06:00
812 lines
32 KiB
C++
812 lines
32 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/**
|
|
* \file
|
|
*
|
|
* \copydoc Opm::EclWellManager
|
|
*/
|
|
#ifndef EWOMS_ECL_WELL_MANAGER_HH
|
|
#define EWOMS_ECL_WELL_MANAGER_HH
|
|
|
|
#include "eclpeacemanwell.hh"
|
|
|
|
#include <ewoms/disc/common/fvbaseproperties.hh>
|
|
|
|
#include <opm/parser/eclipse/Deck/Deck.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Events.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Well/WellConnections.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well2.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/TimeMap.hpp>
|
|
#include <opm/output/data/Wells.hpp>
|
|
#include <opm/material/common/Exceptions.hpp>
|
|
|
|
#include <ewoms/common/propertysystem.hh>
|
|
#include <ewoms/parallel/threadedentityiterator.hh>
|
|
|
|
#include <dune/grid/common/gridenums.hh>
|
|
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
BEGIN_PROPERTIES
|
|
|
|
NEW_PROP_TAG(Grid);
|
|
|
|
END_PROPERTIES
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
*
|
|
* \brief A class which handles well controls as specified by an
|
|
* Eclipse deck
|
|
*/
|
|
template <class TypeTag>
|
|
class EclWellManager
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
|
|
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
|
|
typedef typename GridView::template Codim<0>::Entity Element;
|
|
|
|
typedef Opm::EclPeacemanWell<TypeTag> Well;
|
|
|
|
typedef std::map<int, std::pair<const Opm::Connection*, std::shared_ptr<Well> > > WellConnectionsMap;
|
|
|
|
typedef Dune::FieldVector<Evaluation, numEq> EvalEqVector;
|
|
|
|
public:
|
|
EclWellManager(Simulator& simulator)
|
|
: simulator_(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \brief This sets up the basic properties of all wells.
|
|
*
|
|
* I.e., well positions, names etc...
|
|
*/
|
|
void init()
|
|
{
|
|
const Opm::Schedule& deckSchedule = simulator_.vanguard().schedule();
|
|
const auto& summaryState = simulator_.vanguard().summaryState();
|
|
// create the wells which intersect with the current process' grid
|
|
for (size_t deckWellIdx = 0; deckWellIdx < deckSchedule.numWells(); ++deckWellIdx)
|
|
{
|
|
const Opm::Well2 deckWell = deckSchedule.getWells2atEnd()[deckWellIdx];
|
|
const std::string& wellName = deckWell.name();
|
|
Scalar wellTemperature = 273.15 + 15.56; // [K]
|
|
if (deckWell.isInjector())
|
|
wellTemperature = deckWell.injectionControls(summaryState).temperature;
|
|
|
|
// set the name of the well but not much else. (i.e., if it is not completed,
|
|
// the well primarily serves as a placeholder.) The big rest of the well is
|
|
// specified by the updateWellCompletions_() method
|
|
auto well = std::make_shared<Well>(simulator_);
|
|
well->setName(wellName);
|
|
well->setWellStatus(Well::Shut);
|
|
well->setTemperature(wellTemperature);
|
|
|
|
wells_.push_back(well);
|
|
wellNameToIndex_[well->name()] = wells_.size() - 1;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief This should be called the problem before each simulation
|
|
* episode to adapt the well controls.
|
|
*/
|
|
void beginEpisode(bool wasRestarted=false)
|
|
{
|
|
const Opm::EclipseState& eclState = simulator_.vanguard().eclState();
|
|
const Opm::Schedule& deckSchedule = simulator_.vanguard().schedule();
|
|
const auto& summaryState = simulator_.vanguard().summaryState();
|
|
unsigned episodeIdx = simulator_.episodeIndex();
|
|
WellConnectionsMap wellCompMap;
|
|
computeWellConnectionsMap_(episodeIdx, wellCompMap);
|
|
|
|
if (wasRestarted || wellTopologyChanged_(eclState, deckSchedule, episodeIdx))
|
|
updateWellTopology_(episodeIdx, wellCompMap, gridDofIsPenetrated_);
|
|
|
|
// set those parameters of the wells which do not change the topology of the
|
|
// linearized system of equations
|
|
updateWellParameters_(episodeIdx, wellCompMap);
|
|
|
|
const std::vector<Opm::Well2>& deckWells = deckSchedule.getWells2(episodeIdx);
|
|
// set the injection data for the respective wells.
|
|
for (const auto& deckWell : deckWells) {
|
|
if (!hasWell(deckWell.name()))
|
|
continue;
|
|
|
|
auto well = this->well(deckWell.name());
|
|
|
|
if (deckWell.isInjector( ))
|
|
well->setTemperature(deckWell.injectionControls(summaryState).temperature);
|
|
|
|
auto deckWellStatus = deckWell.getStatus( );
|
|
switch (deckWellStatus) {
|
|
case Opm::Well2::Status::AUTO:
|
|
// TODO: for now, auto means open...
|
|
case Opm::Well2::Status::OPEN:
|
|
well->setWellStatus(Well::Open);
|
|
break;
|
|
case Opm::Well2::Status::STOP:
|
|
well->setWellStatus(Well::Closed);
|
|
break;
|
|
case Opm::Well2::Status::SHUT:
|
|
well->setWellStatus(Well::Shut);
|
|
break;
|
|
}
|
|
|
|
// make sure that the well is either an injector or a
|
|
// producer for the current episode. (it is not allowed to
|
|
// be neither or to be both...)
|
|
assert((deckWell.isInjector( )?1:0) +
|
|
(deckWell.isProducer( )?1:0) == 1);
|
|
|
|
if (deckWell.isInjector( )) {
|
|
well->setWellType(Well::Injector);
|
|
const auto controls = deckWell.injectionControls(summaryState);
|
|
switch (controls.injector_type) {
|
|
case Opm::Well2::InjectorType::WATER:
|
|
well->setInjectedPhaseIndex(FluidSystem::waterPhaseIdx);
|
|
break;
|
|
case Opm::Well2::InjectorType::GAS:
|
|
well->setInjectedPhaseIndex(FluidSystem::gasPhaseIdx);
|
|
break;
|
|
case Opm::Well2::InjectorType::OIL:
|
|
well->setInjectedPhaseIndex(FluidSystem::oilPhaseIdx);
|
|
break;
|
|
case Opm::Well2::InjectorType::MULTI:
|
|
throw std::runtime_error("Not implemented: Multi-phase injector wells");
|
|
}
|
|
|
|
switch (controls.cmode) {
|
|
case Opm::Well2::InjectorCMode::RATE:
|
|
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
|
|
break;
|
|
|
|
case Opm::Well2::InjectorCMode::RESV:
|
|
well->setControlMode(Well::ControlMode::VolumetricReservoirRate);
|
|
break;
|
|
|
|
case Opm::Well2::InjectorCMode::BHP:
|
|
well->setControlMode(Well::ControlMode::BottomHolePressure);
|
|
break;
|
|
|
|
case Opm::Well2::InjectorCMode::THP:
|
|
well->setControlMode(Well::ControlMode::TubingHeadPressure);
|
|
break;
|
|
|
|
case Opm::Well2::InjectorCMode::GRUP:
|
|
throw std::runtime_error("Not implemented: Well groups");
|
|
|
|
case Opm::Well2::InjectorCMode::CMODE_UNDEFINED:
|
|
std::cout << "Warning: Control mode of injection well " << well->name()
|
|
<< " is undefined. Assuming well to be shut.\n";
|
|
well->setWellStatus(Well::WellStatus::Shut);
|
|
continue;
|
|
}
|
|
|
|
switch (controls.injector_type) {
|
|
case Opm::Well2::InjectorType::WATER:
|
|
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/0.0, /*water=*/1.0);
|
|
break;
|
|
|
|
case Opm::Well2::InjectorType::OIL:
|
|
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/0.0);
|
|
break;
|
|
|
|
case Opm::Well2::InjectorType::GAS:
|
|
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/1.0, /*water=*/0.0);
|
|
break;
|
|
|
|
case Opm::Well2::InjectorType::MULTI:
|
|
throw std::runtime_error("Not implemented: Multi-phase injection wells");
|
|
}
|
|
|
|
well->setMaximumSurfaceRate(controls.surface_rate);
|
|
well->setMaximumReservoirRate(controls.reservoir_rate);
|
|
well->setTargetBottomHolePressure(controls.bhp_limit);
|
|
|
|
// TODO
|
|
well->setTargetTubingHeadPressure(1e30);
|
|
//well->setTargetTubingHeadPressure(controls.thp_limit);
|
|
}
|
|
|
|
if (deckWell.isProducer( )) {
|
|
well->setWellType(Well::Producer);
|
|
const auto controls = deckWell.productionControls(summaryState);
|
|
|
|
switch (controls.cmode) {
|
|
case Opm::Well2::ProducerCMode::ORAT:
|
|
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
|
|
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/0.0);
|
|
well->setMaximumSurfaceRate(controls.oil_rate);
|
|
break;
|
|
|
|
case Opm::Well2::ProducerCMode::GRAT:
|
|
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
|
|
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/1.0, /*water=*/0.0);
|
|
well->setMaximumSurfaceRate(controls.gas_rate);
|
|
break;
|
|
|
|
case Opm::Well2::ProducerCMode::WRAT:
|
|
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
|
|
well->setVolumetricPhaseWeights(/*oil=*/0.0, /*gas=*/0.0, /*water=*/1.0);
|
|
well->setMaximumSurfaceRate(controls.water_rate);
|
|
break;
|
|
|
|
case Opm::Well2::ProducerCMode::LRAT:
|
|
well->setControlMode(Well::ControlMode::VolumetricSurfaceRate);
|
|
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/0.0, /*water=*/1.0);
|
|
well->setMaximumSurfaceRate(controls.liquid_rate);
|
|
break;
|
|
|
|
case Opm::Well2::ProducerCMode::CRAT:
|
|
throw std::runtime_error("Not implemented: Linearly combined rates");
|
|
|
|
case Opm::Well2::ProducerCMode::RESV:
|
|
well->setControlMode(Well::ControlMode::VolumetricReservoirRate);
|
|
well->setVolumetricPhaseWeights(/*oil=*/1.0, /*gas=*/1.0, /*water=*/1.0);
|
|
well->setMaximumSurfaceRate(controls.resv_rate);
|
|
break;
|
|
|
|
case Opm::Well2::ProducerCMode::BHP:
|
|
well->setControlMode(Well::ControlMode::BottomHolePressure);
|
|
break;
|
|
|
|
case Opm::Well2::ProducerCMode::THP:
|
|
well->setControlMode(Well::ControlMode::TubingHeadPressure);
|
|
break;
|
|
|
|
case Opm::Well2::ProducerCMode::GRUP:
|
|
throw std::runtime_error("Not implemented: Well groups");
|
|
|
|
case Opm::Well2::ProducerCMode::NONE:
|
|
// fall-through
|
|
case Opm::Well2::ProducerCMode::CMODE_UNDEFINED:
|
|
std::cout << "Warning: Control mode of production well " << well->name()
|
|
<< " is undefined. Assuming well to be shut.";
|
|
well->setWellStatus(Well::WellStatus::Shut);
|
|
continue;
|
|
}
|
|
|
|
well->setTargetBottomHolePressure(controls.bhp_limit);
|
|
|
|
// TODO
|
|
well->setTargetTubingHeadPressure(-1e30);
|
|
//well->setTargetTubingHeadPressure(controls.thp_limit);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the number of wells considered by the EclWellManager.
|
|
*/
|
|
unsigned numWells() const
|
|
{ return wells_.size(); }
|
|
|
|
/*!
|
|
* \brief Return if a given well name is known to the wells manager
|
|
*/
|
|
bool hasWell(const std::string& wellName) const
|
|
{
|
|
return wellNameToIndex_.find( wellName ) != wellNameToIndex_.end();
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns true iff a given degree of freedom is currently penetrated by any well.
|
|
*/
|
|
bool gridDofIsPenetrated(unsigned globalDofIdx) const
|
|
{ return gridDofIsPenetrated_[globalDofIdx]; }
|
|
|
|
/*!
|
|
* \brief Given a well name, return the corresponding index.
|
|
*
|
|
* A std::runtime_error will be thrown if the well name is unknown.
|
|
*/
|
|
unsigned wellIndex(const std::string& wellName) const
|
|
{
|
|
assert( hasWell( wellName ) );
|
|
const auto& it = wellNameToIndex_.find(wellName);
|
|
if (it == wellNameToIndex_.end())
|
|
throw std::runtime_error("No well called '"+wellName+"'found");
|
|
return it->second;
|
|
}
|
|
|
|
/*!
|
|
* \brief Given a well name, return the corresponding well.
|
|
*
|
|
* A std::runtime_error will be thrown if the well name is unknown.
|
|
*/
|
|
std::shared_ptr<const Well> well(const std::string& wellName) const
|
|
{ return wells_[wellIndex(wellName)]; }
|
|
|
|
/*!
|
|
* \brief Given a well name, return the corresponding well.
|
|
*
|
|
* A std::runtime_error will be thrown if the well name is unknown.
|
|
*/
|
|
std::shared_ptr<Well> well(const std::string& wellName)
|
|
{ return wells_[wellIndex(wellName)]; }
|
|
|
|
/*!
|
|
* \brief Given a well index, return the corresponding well.
|
|
*/
|
|
std::shared_ptr<const Well> well(size_t wellIdx) const
|
|
{ return wells_[wellIdx]; }
|
|
|
|
/*!
|
|
* \brief Given a well index, return the corresponding well.
|
|
*/
|
|
std::shared_ptr<Well> well(size_t wellIdx)
|
|
{ return wells_[wellIdx]; }
|
|
|
|
/*!
|
|
* \brief Informs the well manager that a time step has just begun.
|
|
*/
|
|
void beginTimeStep()
|
|
{
|
|
// iterate over all wells and notify them individually
|
|
for (size_t wellIdx = 0; wellIdx < wells_.size(); ++wellIdx)
|
|
wells_[wellIdx]->beginTimeStep();
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well that an iteration has just begun.
|
|
*
|
|
* In this method, the well calculates the bottom hole and tubing head pressures, the
|
|
* actual unconstraint production and injection rates, etc.
|
|
*/
|
|
void beginIteration()
|
|
{
|
|
// call the preprocessing routines
|
|
const size_t wellSize = wells_.size();
|
|
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
|
|
wells_[wellIdx]->beginIterationPreProcess();
|
|
|
|
// call the accumulation routines
|
|
ElementContext elemCtx(simulator_);
|
|
const auto gridView = simulator_.vanguard().gridView();
|
|
auto elemIt = gridView.template begin</*codim=*/0>();
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const Element& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue;
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
|
|
wells_[wellIdx]->beginIterationAccumulate(elemCtx, /*timeIdx=*/0);
|
|
}
|
|
|
|
// call the postprocessing routines
|
|
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
|
|
wells_[wellIdx]->beginIterationPostProcess();
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well manager that an iteration has just been finished.
|
|
*/
|
|
void endIteration()
|
|
{
|
|
// iterate over all wells and notify them individually
|
|
const size_t wellSize = wells_.size();
|
|
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx)
|
|
wells_[wellIdx]->endIteration();
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well manager that a time step has just been finished.
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
Scalar dt = simulator_.timeStepSize();
|
|
|
|
// iterate over all wells and notify them individually. also, update the
|
|
// production/injection totals for the active wells.
|
|
const size_t wellSize = wells_.size();
|
|
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx) {
|
|
auto well = wells_[wellIdx];
|
|
well->endTimeStep();
|
|
|
|
// update the surface volumes of the produced/injected fluids
|
|
std::array<Scalar, numPhases>* injectedVolume;
|
|
if (wellTotalInjectedVolume_.count(well->name()) == 0) {
|
|
injectedVolume = &wellTotalInjectedVolume_[well->name()];
|
|
std::fill(injectedVolume->begin(), injectedVolume->end(), 0.0);
|
|
}
|
|
else
|
|
injectedVolume = &wellTotalInjectedVolume_[well->name()];
|
|
|
|
std::array<Scalar, numPhases>* producedVolume;
|
|
if (wellTotalProducedVolume_.count(well->name()) == 0) {
|
|
producedVolume = &wellTotalProducedVolume_[well->name()];
|
|
std::fill(producedVolume->begin(), producedVolume->end(), 0.0);
|
|
}
|
|
else
|
|
producedVolume = &wellTotalProducedVolume_[well->name()];
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
// this assumes that the implicit Euler method is used for time
|
|
// integration. TODO: Once the time discretization becomes pluggable,
|
|
// this integration needs to be done by the time discretization code!
|
|
Scalar vol = dt * well->surfaceRate(phaseIdx);
|
|
|
|
if (vol < 0)
|
|
(*producedVolume)[phaseIdx] += -vol;
|
|
else
|
|
(*injectedVolume)[phaseIdx] += vol;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the well manager that a simulation episode has just been finished.
|
|
*/
|
|
void endEpisode()
|
|
{ }
|
|
|
|
/*!
|
|
* \brief Returns the surface volume of a fluid phase produced by a well.
|
|
*/
|
|
Scalar totalProducedVolume(const std::string& wellName, unsigned phaseIdx) const
|
|
{
|
|
if (wellTotalProducedVolume_.count(wellName) == 0)
|
|
return 0.0; // well not yet seen
|
|
return wellTotalProducedVolume_.at(wellName)[phaseIdx];
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the surface volume of a fluid phase injected by a well.
|
|
*/
|
|
Scalar totalInjectedVolume(const std::string& wellName, unsigned phaseIdx) const
|
|
{
|
|
if (wellTotalInjectedVolume_.count(wellName) == 0)
|
|
return 0.0; // well not yet seen
|
|
return wellTotalInjectedVolume_.at(wellName)[phaseIdx];
|
|
}
|
|
|
|
/*!
|
|
* \brief Computes the source term due to wells for a degree of
|
|
* freedom.
|
|
*/
|
|
template <class Context>
|
|
void computeTotalRatesForDof(EvalEqVector& q,
|
|
const Context& context,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
q = 0.0;
|
|
|
|
if (!gridDofIsPenetrated(context.globalSpaceIndex(dofIdx, timeIdx)))
|
|
return;
|
|
|
|
RateVector wellRate;
|
|
|
|
// iterate over all wells and add up their individual rates
|
|
const size_t wellSize = wells_.size();
|
|
for (size_t wellIdx = 0; wellIdx < wellSize; ++wellIdx) {
|
|
wellRate = 0.0;
|
|
wells_[wellIdx]->computeTotalRatesForDof(wellRate, context, dofIdx, timeIdx);
|
|
for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx)
|
|
q[eqIdx] += wellRate[eqIdx];
|
|
}
|
|
}
|
|
|
|
Opm::data::Wells wellData() const
|
|
{
|
|
Opm::data::Wells wellDat;
|
|
|
|
using rt = Opm::data::Rates::opt;
|
|
for (unsigned wellIdx = 0; wellIdx < numWells(); ++wellIdx) {
|
|
const auto& ebosWell = well(wellIdx);
|
|
auto& wellOut = wellDat[ebosWell->name()];
|
|
|
|
wellOut.bhp = ebosWell->bottomHolePressure();
|
|
wellOut.thp = ebosWell->tubingHeadPressure();
|
|
wellOut.temperature = 0;
|
|
wellOut.rates.set( rt::wat, ebosWell->surfaceRate(waterPhaseIdx) );
|
|
wellOut.rates.set( rt::oil, ebosWell->surfaceRate(oilPhaseIdx) );
|
|
wellOut.rates.set( rt::gas, ebosWell->surfaceRate(gasPhaseIdx) );
|
|
|
|
const int numConnections = ebosWell->numConnections();
|
|
wellOut.connections.resize(numConnections);
|
|
|
|
for( int i = 0; i < numConnections; ++i ) {
|
|
auto& connection = wellOut.connections[ i ];
|
|
connection.index = 0;
|
|
connection.pressure = 0.0;
|
|
connection.reservoir_rate = 0.0;
|
|
connection.rates.set( rt::wat, 0.0 );
|
|
connection.rates.set( rt::oil, 0.0 );
|
|
connection.rates.set( rt::gas, 0.0 );
|
|
}
|
|
}
|
|
|
|
return wellDat;
|
|
}
|
|
|
|
/*!
|
|
* \brief This method writes the complete state of all wells
|
|
* to the hard disk.
|
|
*/
|
|
template <class Restarter>
|
|
void serialize(Restarter& res OPM_UNUSED)
|
|
{
|
|
/* do nothing: Everything which we need here is provided by the deck->.. */
|
|
}
|
|
|
|
/*!
|
|
* \brief This method restores the complete state of the all wells
|
|
* from disk.
|
|
*
|
|
* It is the inverse of the serialize() method.
|
|
*/
|
|
template <class Restarter>
|
|
void deserialize(Restarter& res OPM_UNUSED)
|
|
{
|
|
// initialize the wells for the current episode
|
|
beginEpisode(/*wasRestarted=*/true);
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns true if something in a well changed compared to the previous report
|
|
* step.
|
|
*
|
|
* "Something" can either be the well topology (i.e., which grid blocks are contained
|
|
* in which well) or it can be a well parameter like the bottom hole pressure...
|
|
*/
|
|
bool wellsChanged(const Opm::EclipseState& eclState,
|
|
const Opm::Schedule& schedule,
|
|
unsigned reportStepIdx) const
|
|
{
|
|
if (wellTopologyChanged_(eclState, reportStepIdx))
|
|
return true;
|
|
|
|
if (schedule.getTimeMap().numTimesteps() <= (unsigned) reportStepIdx)
|
|
// for the "until the universe dies" episode, the wells don't change
|
|
return false;
|
|
|
|
const Opm::Events& events = schedule.getEvents();
|
|
return events.hasEvent(Opm::ScheduleEvents::PRODUCTION_UPDATE |
|
|
Opm::ScheduleEvents::INJECTION_UPDATE |
|
|
Opm::ScheduleEvents::WELL_STATUS_CHANGE,
|
|
reportStepIdx);
|
|
}
|
|
|
|
protected:
|
|
bool wellTopologyChanged_(const Opm::EclipseState& eclState OPM_UNUSED,
|
|
const Opm::Schedule& schedule,
|
|
unsigned reportStepIdx) const
|
|
{
|
|
if (reportStepIdx == 0) {
|
|
// the well topology has always been changed relative to before the
|
|
// simulation is started...
|
|
return true;
|
|
}
|
|
|
|
if (schedule.getTimeMap().numTimesteps() <= (unsigned) reportStepIdx)
|
|
// for the "until the universe dies" episode, the wells don't change
|
|
return false;
|
|
|
|
const Opm::Events& events = schedule.getEvents();
|
|
return events.hasEvent(Opm::ScheduleEvents::NEW_WELL |
|
|
Opm::ScheduleEvents::COMPLETION_CHANGE,
|
|
reportStepIdx);
|
|
}
|
|
|
|
void updateWellTopology_(unsigned reportStepIdx OPM_UNUSED,
|
|
const WellConnectionsMap& wellConnections,
|
|
std::vector<bool>& gridDofIsPenetrated) const
|
|
{
|
|
auto& model = simulator_.model();
|
|
const auto& vanguard = simulator_.vanguard();
|
|
|
|
// first, remove all wells from the reservoir
|
|
model.clearAuxiliaryModules();
|
|
auto wellIt = wells_.begin();
|
|
const auto& wellEndIt = wells_.end();
|
|
for (; wellIt != wellEndIt; ++wellIt) {
|
|
(*wellIt)->clear();
|
|
(*wellIt)->beginSpec();
|
|
}
|
|
|
|
//////
|
|
// tell the active wells which DOFs they contain
|
|
const auto gridView = simulator_.vanguard().gridView();
|
|
|
|
gridDofIsPenetrated.resize(model.numGridDof());
|
|
std::fill(gridDofIsPenetrated.begin(), gridDofIsPenetrated.end(), false);
|
|
|
|
ElementContext elemCtx(simulator_);
|
|
auto elemIt = gridView.template begin</*codim=*/0>();
|
|
const auto elemEndIt = gridView.template end</*codim=*/0>();
|
|
std::set<std::shared_ptr<Well> > wells;
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue; // non-local entities need to be skipped
|
|
|
|
elemCtx.updateStencil(elem);
|
|
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++ dofIdx) {
|
|
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
unsigned cartesianDofIdx = vanguard.cartesianIndex(globalDofIdx);
|
|
|
|
if (wellConnections.count(cartesianDofIdx) == 0)
|
|
// the current DOF is not contained in any well, so we must skip
|
|
// it...
|
|
continue;
|
|
|
|
gridDofIsPenetrated[globalDofIdx] = true;
|
|
|
|
auto eclWell = wellConnections.at(cartesianDofIdx).second;
|
|
eclWell->addDof(elemCtx, dofIdx);
|
|
|
|
wells.insert(eclWell);
|
|
}
|
|
//////
|
|
}
|
|
|
|
// register all wells at the model as auxiliary equations
|
|
wellIt = wells_.begin();
|
|
for (; wellIt != wellEndIt; ++wellIt) {
|
|
(*wellIt)->endSpec();
|
|
model.addAuxiliaryModule(wellIt->get());
|
|
}
|
|
}
|
|
|
|
void computeWellConnectionsMap_(unsigned reportStepIdx OPM_UNUSED, WellConnectionsMap& cartesianIdxToConnectionMap)
|
|
{
|
|
const auto& deckSchedule = simulator_.vanguard().schedule();
|
|
|
|
#ifndef NDEBUG
|
|
const auto& eclState = simulator_.vanguard().eclState();
|
|
const auto& eclGrid = eclState.getInputGrid();
|
|
assert( int(eclGrid.getNX()) == simulator_.vanguard().cartesianDimensions()[ 0 ] );
|
|
assert( int(eclGrid.getNY()) == simulator_.vanguard().cartesianDimensions()[ 1 ] );
|
|
assert( int(eclGrid.getNZ()) == simulator_.vanguard().cartesianDimensions()[ 2 ] );
|
|
#endif
|
|
|
|
// compute the mapping from logically Cartesian indices to the well the
|
|
// respective connection.
|
|
const auto deckWells = deckSchedule.getWells2(reportStepIdx);
|
|
for (const auto& deckWell : deckWells) {
|
|
const std::string& wellName = deckWell.name();
|
|
|
|
if (!hasWell(wellName))
|
|
{
|
|
#ifndef NDEBUG
|
|
if( simulator_.vanguard().grid().comm().size() == 1 )
|
|
{
|
|
std::cout << "Well '" << wellName << "' suddenly appears in the connection "
|
|
<< "for the report step, but has not been previously specified. "
|
|
<< "Ignoring.\n";
|
|
}
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
std::array<int, 3> cartesianCoordinate;
|
|
// set the well parameters defined by the current set of connections
|
|
const auto& connectionSet = deckWell.getConnections();
|
|
for (size_t connIdx = 0; connIdx < connectionSet.size(); connIdx ++) {
|
|
const auto& connection = connectionSet.get(connIdx);
|
|
cartesianCoordinate[ 0 ] = connection.getI();
|
|
cartesianCoordinate[ 1 ] = connection.getJ();
|
|
cartesianCoordinate[ 2 ] = connection.getK();
|
|
unsigned cartIdx = simulator_.vanguard().cartesianIndex( cartesianCoordinate );
|
|
|
|
// in this code we only support each cell to be part of at most a single
|
|
// well. TODO (?) change this?
|
|
assert(cartesianIdxToConnectionMap.count(cartIdx) == 0);
|
|
|
|
auto eclWell = wells_[wellIndex(wellName)];
|
|
cartesianIdxToConnectionMap[cartIdx] = std::make_pair(&connection, eclWell);
|
|
}
|
|
}
|
|
}
|
|
|
|
void updateWellParameters_(unsigned reportStepIdx, const WellConnectionsMap& wellConnections)
|
|
{
|
|
const auto& deckSchedule = simulator_.vanguard().schedule();
|
|
const auto deckWells = deckSchedule.getWells2(reportStepIdx);
|
|
|
|
// set the reference depth for all wells
|
|
for (const auto& deckWell : deckWells) {
|
|
const std::string& wellName = deckWell.name();
|
|
|
|
if( hasWell( wellName ) )
|
|
{
|
|
wells_[wellIndex(wellName)]->clear();
|
|
wells_[wellIndex(wellName)]->setReferenceDepth(deckWell.getRefDepth());
|
|
}
|
|
}
|
|
|
|
// associate the well connections with grid cells and register them in the
|
|
// Peaceman well object
|
|
const auto& vanguard = simulator_.vanguard();
|
|
const GridView gridView = vanguard.gridView();
|
|
|
|
ElementContext elemCtx(simulator_);
|
|
auto elemIt = gridView.template begin</*codim=*/0>();
|
|
const auto elemEndIt = gridView.template end</*codim=*/0>();
|
|
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity)
|
|
continue; // non-local entities need to be skipped
|
|
|
|
elemCtx.updateStencil(elem);
|
|
for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++ dofIdx)
|
|
{
|
|
assert( elemCtx.numPrimaryDof(/*timeIdx=*/0) == 1 );
|
|
unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0);
|
|
unsigned cartesianDofIdx = vanguard.cartesianIndex(globalDofIdx);
|
|
|
|
if (wellConnections.count(cartesianDofIdx) == 0)
|
|
// the current DOF is not contained in any well, so we must skip
|
|
// it...
|
|
continue;
|
|
|
|
const auto& connInfo = wellConnections.at(cartesianDofIdx);
|
|
const Opm::Connection* connection = connInfo.first;
|
|
std::shared_ptr<Well> eclWell = connInfo.second;
|
|
eclWell->addDof(elemCtx, dofIdx);
|
|
eclWell->setConnectionTransmissibilityFactor(elemCtx, dofIdx, connection->CF());
|
|
eclWell->setRadius(elemCtx, dofIdx, connection->rw());
|
|
//eclWell->setEffectivePermeability(elemCtx, dofIdx, connection->Kh());
|
|
}
|
|
}
|
|
}
|
|
|
|
Simulator& simulator_;
|
|
|
|
std::vector<std::shared_ptr<Well> > wells_;
|
|
std::vector<bool> gridDofIsPenetrated_;
|
|
std::map<std::string, int> wellNameToIndex_;
|
|
std::map<std::string, std::array<Scalar, numPhases> > wellTotalInjectedVolume_;
|
|
std::map<std::string, std::array<Scalar, numPhases> > wellTotalProducedVolume_;
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|