opm-simulators/opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp
2020-09-18 09:50:41 +02:00

1298 lines
55 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/simulators/wells/WellState.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <vector>
#include <cassert>
#include <string>
#include <utility>
#include <map>
#include <algorithm>
#include <array>
#include <iostream>
#include <numeric>
namespace Opm
{
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoil
: public WellState
{
typedef WellState BaseType;
public:
typedef BaseType :: WellMapType WellMapType;
virtual ~WellStateFullyImplicitBlackoil() = default;
// TODO: same definition with WellInterface, eventually they should go to a common header file.
static const int Water = BlackoilPhases::Aqua;
static const int Oil = BlackoilPhases::Liquid;
static const int Gas = BlackoilPhases::Vapour;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
void init(const std::vector<double>& cellPressures,
const Schedule& schedule,
const std::vector<Well>& wells_ecl,
const int report_step,
const WellStateFullyImplicitBlackoil* prevState,
const PhaseUsage& pu,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state,
const int globalNumberOfWells)
{
// call init on base class
BaseType :: init(cellPressures, wells_ecl, pu, well_perf_data, summary_state);
globalIsInjectionGrup_.assign(globalNumberOfWells,0);
globalIsProductionGrup_.assign(globalNumberOfWells,0);
wellNameToGlobalIdx_.clear();
const int nw = wells_ecl.size();
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const int np = pu.num_phases;
int nperf = 0;
for (const auto& wpd : well_perf_data) {
nperf += wpd.size();
}
well_reservoir_rates_.resize(nw * np, 0.0);
well_dissolved_gas_rates_.resize(nw, 0.0);
well_vaporized_oil_rates_.resize(nw, 0.0);
// checking whether some effective well control happens
effective_events_occurred_.resize(nw, true);
// a hack to make the resize() function used in RESTART related work
if (!wells_ecl.empty() ) {
// At the moment, the following events are considered to be effective events
// more events might join as effective events
// PRODUCTION_UPDATE, INJECTION_UPDATE, WELL_STATUS_CHANGE
// 16 + 32 + 128
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
+ ScheduleEvents::PRODUCTION_UPDATE
+ ScheduleEvents::INJECTION_UPDATE;
for (int w = 0; w < nw; ++w) {
effective_events_occurred_[w]
= schedule.hasWellGroupEvent(wells_ecl[w].name(), effective_events_mask, report_step);
}
} // end of if (!well_ecl.empty() )
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * np, 0.0);
// these are only used to monitor the injectivity
perf_water_throughput_.clear();
perf_water_throughput_.resize(nperf, 0.0);
perf_water_velocity_.clear();
perf_water_velocity_.resize(nperf, 0.0);
perf_skin_pressure_.clear();
perf_skin_pressure_.resize(nperf, 0.0);
int connpos = 0;
first_perf_index_.resize(nw+1, 0);
first_perf_index_[0] = connpos;
for (int w = 0; w < nw; ++w) {
// Initialize perfphaserates_ to well
// rates divided by the number of perforations.
const int num_perf_this_well = well_perf_data[w].size();
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf) {
if (wells_ecl[w].getStatus() == Well::Status::OPEN) {
for (int p = 0; p < np; ++p) {
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
}
}
perfPress()[perf] = cellPressures[well_perf_data[w][perf-connpos].cell_index];
}
connpos += num_perf_this_well;
first_perf_index_[w+1] = connpos;
}
current_injection_controls_.resize(nw);
current_production_controls_.resize(nw);
perfRateSolvent_.clear();
perfRateSolvent_.resize(nperf, 0.0);
productivity_index_.resize(nw * np, 0.0);
well_potentials_.resize(nw * np, 0.0);
perfRatePolymer_.clear();
perfRatePolymer_.resize(nperf, 0.0);
perfRateBrine_.clear();
perfRateBrine_.resize(nperf, 0.0);
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if (prevState && !prevState->wellMap().empty()) {
connpos = 0;
auto end = prevState->wellMap().end();
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
const int num_perf_this_well = well_perf_data[w].size();
auto it = prevState->wellMap().find(well.name());
if ( it != end )
{
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// bhp
bhp()[ newIndex ] = prevState->bhp()[ oldIndex ];
// thp
thp()[ newIndex ] = prevState->thp()[ oldIndex ];
// Currently this is taken care of by updateWellStateFromTarge. Maybe we should just remove the initialization and just use updateWellStateFromTarget
//if (effective_events_occurred_[w]) {
// continue;
//}
// if there is no effective control event happens to the well, we use the current_injection/production_controls_ from prevState
// otherwise, we use the control specified in the deck
if (!effective_events_occurred_[w]) {
current_injection_controls_[ newIndex ] = prevState->currentInjectionControls()[ oldIndex ];
current_production_controls_[ newIndex ] = prevState->currentProductionControls()[ oldIndex ];
}
// wellrates
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellRates()[ idx ] = prevState->wellRates()[ oldidx ];
}
// wellResrates
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellReservoirRates()[ idx ] = prevState->wellReservoirRates()[ oldidx ];
}
// perfPhaseRates
const int oldPerf_idx_beg = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
// copy perforation rates when the number of perforations is equal,
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
if( num_perf_old_well == num_perf_this_well )
{
int old_perf_phase_idx = oldPerf_idx_beg *np;
for (int perf_phase_idx = connpos*np;
perf_phase_idx < (connpos + num_perf_this_well)*np; ++perf_phase_idx, ++old_perf_phase_idx )
{
perfPhaseRates()[ perf_phase_idx ] = prevState->perfPhaseRates()[ old_perf_phase_idx ];
}
} else {
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf) {
for (int p = 0; p < np; ++p) {
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
}
}
}
// perfPressures
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
{
perfPress()[ perf ] = prevState->perfPress()[ oldPerf_idx ];
}
}
// perfSolventRates
if (pu.has_solvent) {
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
{
perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ];
}
}
}
// polymer injectivity related
// here we did not consider the case that we close some perforation during the running
// and also, wells can be shut and re-opened
if (pu.has_polymermw) {
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
{
perf_water_throughput_[ perf ] = prevState->perfThroughput()[ oldPerf_idx ];
perf_skin_pressure_[ perf ] = prevState->perfSkinPressure()[ oldPerf_idx ];
perf_water_velocity_[ perf ] = prevState->perfWaterVelocity()[ oldPerf_idx ];
}
}
}
}
// If in the new step, there is no THP related target/limit anymore, its thp value should be
// set to zero.
const bool has_thp = well.isInjector() ? well.injectionControls(summary_state).hasControl(Well::InjectorCMode::THP)
: well.productionControls(summary_state).hasControl(Well::ProducerCMode::THP);
if (!has_thp) {
thp()[w] = 0.0;
}
// Increment connection position offset.
connpos += num_perf_this_well;
}
}
{
// we need to create a trival segment related values to avoid there will be some
// multi-segment wells added later.
nseg_ = nw;
top_segment_index_.resize(nw);
seg_number_.resize(nw);
for (int w = 0; w < nw; ++w) {
top_segment_index_[w] = w;
seg_number_[w] = 1; // Top segment is segment #1
}
seg_press_ = bhp();
seg_rates_ = wellRates();
seg_pressdrop_.assign(nw, 0.);
seg_pressdrop_hydorstatic_.assign(nw, 0.);
seg_pressdrop_friction_.assign(nw, 0.);
seg_pressdrop_acceleration_.assign(nw, 0.);
}
}
void resize(const std::vector<Well>& wells_ecl,
const Schedule& schedule,
const bool handle_ms_well,
const size_t numCells,
const PhaseUsage& pu,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state,
const int globalNumWells)
{
const std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
init(tmp, schedule, wells_ecl, 0, nullptr, pu, well_perf_data, summary_state, globalNumWells);
if (handle_ms_well) {
initWellStateMSWell(wells_ecl, pu, nullptr);
}
}
/// One rate per phase and well connection.
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// One current control per injecting well.
std::vector<Opm::Well::InjectorCMode>& currentInjectionControls() { return current_injection_controls_; }
const std::vector<Opm::Well::InjectorCMode>& currentInjectionControls() const { return current_injection_controls_; }
/// One current control per producing well.
std::vector<Well::ProducerCMode>& currentProductionControls() { return current_production_controls_; }
const std::vector<Well::ProducerCMode>& currentProductionControls() const { return current_production_controls_; }
bool hasProductionGroupControl(const std::string& groupName) const {
return current_production_group_controls_.count(groupName) > 0;
}
bool hasInjectionGroupControl(const Opm::Phase& phase, const std::string& groupName) const {
return current_injection_group_controls_.count(std::make_pair(phase, groupName)) > 0;
}
/// One current control per group.
void setCurrentProductionGroupControl(const std::string& groupName, const Group::ProductionCMode& groupControl ) {
current_production_group_controls_[groupName] = groupControl;
}
const Group::ProductionCMode& currentProductionGroupControl(const std::string& groupName) const {
auto it = current_production_group_controls_.find(groupName);
if (it == current_production_group_controls_.end())
OPM_THROW(std::logic_error, "Could not find any control for production group " << groupName);
return it->second;
}
/// One current control per group.
void setCurrentInjectionGroupControl(const Opm::Phase& phase, const std::string& groupName, const Group::InjectionCMode& groupControl ) {
current_injection_group_controls_[std::make_pair(phase, groupName)] = groupControl;
}
const Group::InjectionCMode& currentInjectionGroupControl(const Opm::Phase& phase, const std::string& groupName) const {
auto it = current_injection_group_controls_.find(std::make_pair(phase, groupName));
if (it == current_injection_group_controls_.end())
OPM_THROW(std::logic_error, "Could not find any control for " << phase << " injection group " << groupName);
return it->second;
}
void setCurrentWellRates(const std::string& wellName, const std::vector<double>& rates ) {
well_rates[wellName] = rates;
}
const std::vector<double>& currentWellRates(const std::string& wellName) const {
auto it = well_rates.find(wellName);
if (it == well_rates.end())
OPM_THROW(std::logic_error, "Could not find any rates for well " << wellName);
return it->second;
}
bool hasWellRates(const std::string& wellName) const {
return this->well_rates.find(wellName) != this->well_rates.end();
}
void setCurrentProductionGroupRates(const std::string& groupName, const std::vector<double>& rates ) {
production_group_rates[groupName] = rates;
}
const std::vector<double>& currentProductionGroupRates(const std::string& groupName) const {
auto it = production_group_rates.find(groupName);
if (it == production_group_rates.end())
OPM_THROW(std::logic_error, "Could not find any rates for productino group " << groupName);
return it->second;
}
bool hasProductionGroupRates(const std::string& groupName) const {
return this->production_group_rates.find(groupName) != this->production_group_rates.end();
}
void setCurrentProductionGroupReductionRates(const std::string& groupName, const std::vector<double>& target ) {
production_group_reduction_rates[groupName] = target;
}
const std::vector<double>& currentProductionGroupReductionRates(const std::string& groupName) const {
auto it = production_group_reduction_rates.find(groupName);
if (it == production_group_reduction_rates.end())
OPM_THROW(std::logic_error, "Could not find any reduction rates for production group " << groupName);
return it->second;
}
void setCurrentInjectionGroupReductionRates(const std::string& groupName, const std::vector<double>& target ) {
injection_group_reduction_rates[groupName] = target;
}
const std::vector<double>& currentInjectionGroupReductionRates(const std::string& groupName) const {
auto it = injection_group_reduction_rates.find(groupName);
if (it == injection_group_reduction_rates.end())
OPM_THROW(std::logic_error, "Could not find any reduction rates for injection group " << groupName);
return it->second;
}
void setCurrentInjectionGroupReservoirRates(const std::string& groupName, const std::vector<double>& target ) {
injection_group_reservoir_rates[groupName] = target;
}
const std::vector<double>& currentInjectionGroupReservoirRates(const std::string& groupName) const {
auto it = injection_group_reservoir_rates.find(groupName);
if (it == injection_group_reservoir_rates.end())
OPM_THROW(std::logic_error, "Could not find any reservoir rates for injection group " << groupName);
return it->second;
}
void setCurrentInjectionVREPRates(const std::string& groupName, const double& target ) {
injection_group_vrep_rates[groupName] = target;
}
const double& currentInjectionVREPRates(const std::string& groupName) const {
auto it = injection_group_vrep_rates.find(groupName);
if (it == injection_group_vrep_rates.end())
OPM_THROW(std::logic_error, "Could not find any VREP rates for group " << groupName);
return it->second;
}
void setCurrentInjectionREINRates(const std::string& groupName, const std::vector<double>& target ) {
injection_group_rein_rates[groupName] = target;
}
const std::vector<double>& currentInjectionREINRates(const std::string& groupName) const {
auto it = injection_group_rein_rates.find(groupName);
if (it == injection_group_rein_rates.end())
OPM_THROW(std::logic_error, "Could not find any REIN rates for group " << groupName);
return it->second;
}
void setCurrentGroupGratTargetFromSales(const std::string& groupName, const double& target ) {
group_grat_target_from_sales[groupName] = target;
}
bool hasGroupGratTargetFromSales(const std::string& groupName) const {
auto it = group_grat_target_from_sales.find(groupName);
return it != group_grat_target_from_sales.end();
}
const double& currentGroupGratTargetFromSales(const std::string& groupName) const {
auto it = group_grat_target_from_sales.find(groupName);
if (it == group_grat_target_from_sales.end())
OPM_THROW(std::logic_error, "Could not find any grat target from sales for group " << groupName);
return it->second;
}
void setCurrentGroupInjectionPotentials(const std::string& groupName, const std::vector<double>& pot ) {
injection_group_potentials[groupName] = pot;
}
const std::vector<double>& currentGroupInjectionPotentials(const std::string& groupName) const {
auto it = injection_group_potentials.find(groupName);
if (it == injection_group_potentials.end())
OPM_THROW(std::logic_error, "Could not find any potentials for group " << groupName);
return it->second;
}
data::Wells report(const PhaseUsage &pu, const int* globalCellIdxMap) const override
{
data::Wells res = WellState::report(pu, globalCellIdxMap);
const int nw = this->numWells();
if( nw == 0 ) return res;
const int np = pu.num_phases;
using rt = data::Rates::opt;
std::vector< rt > phs( np );
if( pu.phase_used[Water] ) {
phs.at( pu.phase_pos[Water] ) = rt::wat;
}
if( pu.phase_used[Oil] ) {
phs.at( pu.phase_pos[Oil] ) = rt::oil;
}
if( pu.phase_used[Gas] ) {
phs.at( pu.phase_pos[Gas] ) = rt::gas;
}
/* this is a reference or example on **how** to convert from
* WellState to something understood by opm-output. it is intended
* to be properly implemented and maintained as a part of
* simulators, as it relies on simulator internals, details and
* representations.
*/
for( const auto& wt : this->wellMap() ) {
const auto w = wt.second[ 0 ];
if (!this->open_for_output_[w])
continue;
auto& well = res.at( wt.first );
//well.injectionControl = static_cast<int>(this->currentInjectionControls()[ w ]);
//well.productionControl = static_cast<int>(this->currentProductionControls()[ w ]);
const int well_rate_index = w * pu.num_phases;
if ( pu.phase_used[Water] ) {
well.rates.set( rt::reservoir_water, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Water]] );
}
if ( pu.phase_used[Oil] ) {
well.rates.set( rt::reservoir_oil, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Oil]] );
}
if ( pu.phase_used[Gas] ) {
well.rates.set( rt::reservoir_gas, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Gas]] );
}
if ( pu.phase_used[Water] ) {
well.rates.set( rt::productivity_index_water, this->productivity_index_[well_rate_index + pu.phase_pos[Water]] );
}
if ( pu.phase_used[Oil] ) {
well.rates.set( rt::productivity_index_oil, this->productivity_index_[well_rate_index + pu.phase_pos[Oil]] );
}
if ( pu.phase_used[Gas] ) {
well.rates.set( rt::productivity_index_gas, this->productivity_index_[well_rate_index + pu.phase_pos[Gas]] );
}
if ( pu.phase_used[Water] ) {
well.rates.set( rt::well_potential_water, this->well_potentials_[well_rate_index + pu.phase_pos[Water]] );
}
if ( pu.phase_used[Oil] ) {
well.rates.set( rt::well_potential_oil, this->well_potentials_[well_rate_index + pu.phase_pos[Oil]] );
}
if ( pu.phase_used[Gas] ) {
well.rates.set( rt::well_potential_gas, this->well_potentials_[well_rate_index + pu.phase_pos[Gas]] );
}
if ( pu.has_solvent ) {
well.rates.set( rt::solvent, solventWellRate(w) );
}
if ( pu.has_polymer ) {
well.rates.set( rt::polymer, polymerWellRate(w) );
}
if ( pu.has_brine ) {
well.rates.set( rt::brine, brineWellRate(w) );
}
well.rates.set( rt::dissolved_gas, this->well_dissolved_gas_rates_[w] );
well.rates.set( rt::vaporized_oil, this->well_vaporized_oil_rates_[w] );
{
auto& curr = well.current_control;
curr.prod = this->currentProductionControls()[w];
curr.inj = this->currentInjectionControls() [w];
}
size_t local_comp_index = 0;
for( auto& comp : well.connections) {
const auto rates = this->perfPhaseRates().begin()
+ (np * wt.second[ 1 ])
+ (np * local_comp_index);
for( int i = 0; i < np; ++i ) {
comp.rates.set( phs[ i ], *(rates + i) );
}
if ( pu.has_polymer ) {
comp.rates.set( rt::polymer, this->perfRatePolymer()[local_comp_index]);
}
if ( pu.has_brine ) {
comp.rates.set( rt::brine, this->perfRateBrine()[local_comp_index]);
}
if ( pu.has_solvent ) {
comp.rates.set( rt::solvent, this->perfRateSolvent()[local_comp_index]);
}
++local_comp_index;
}
assert(local_comp_index == this->well_perf_data_[w].size());
const auto nseg = this->numSegments(w);
for (auto seg_ix = 0*nseg; seg_ix < nseg; ++seg_ix) {
const auto seg_no = this->segmentNumber(w, seg_ix);
well.segments[seg_no] =
this->reportSegmentResults(pu, w, seg_ix, seg_no);
}
}
return res;
}
/// init the MS well related.
void initWellStateMSWell(const std::vector<Well>& wells_ecl,
const PhaseUsage& pu, const WellStateFullyImplicitBlackoil* prev_well_state)
{
// still using the order in wells
const int nw = wells_ecl.size();
if (nw == 0) {
return;
}
top_segment_index_.clear();
top_segment_index_.reserve(nw);
seg_press_.clear();
seg_press_.reserve(nw);
seg_rates_.clear();
seg_rates_.reserve(nw * numPhases());
seg_number_.clear();
nseg_ = 0;
int connpos = 0;
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
// what we do here, is to set the segment rates and perforation rates
for (int w = 0; w < nw; ++w) {
const auto& well_ecl = wells_ecl[w];
int num_perf_this_well = well_perf_data_[w].size();
top_segment_index_.push_back(nseg_);
if ( !well_ecl.isMultiSegment() ) { // not multi-segment well
nseg_ += 1;
seg_number_.push_back(1); // Assign single segment (top) as number 1.
seg_press_.push_back(bhp()[w]);
const int np = numPhases();
for (int p = 0; p < np; ++p) {
seg_rates_.push_back(wellRates()[np * w + p]);
}
} else { // it is a multi-segment well
const WellSegments& segment_set = well_ecl.getSegments();
// assuming the order of the perforations in well_ecl is the same with Wells
const WellConnections& completion_set = well_ecl.getConnections();
// number of segment for this single well
const int well_nseg = segment_set.size();
int n_activeperf = 0;
nseg_ += well_nseg;
for (auto segID = 0*well_nseg; segID < well_nseg; ++segID) {
this->seg_number_.push_back(segment_set[segID].segmentNumber());
}
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
// that is why I think we should use a well model to initialize the WellState here
std::vector<std::vector<int>> segment_perforations(well_nseg);
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
const Connection& connection = completion_set.get(perf);
if (connection.state() == Connection::State::OPEN) {
const int segment_index = segment_set.segmentNumberToIndex(connection.segment());
segment_perforations[segment_index].push_back(n_activeperf);
n_activeperf++;
}
}
std::vector<std::vector<int>> segment_inlets(well_nseg);
for (int seg = 0; seg < well_nseg; ++seg) {
const Segment& segment = segment_set[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
segment_inlets[outlet_segment_index].push_back(segment_index);
}
}
// for the seg_rates_, now it becomes a recursive solution procedure.
{
const int np = numPhases();
const int start_perf = connpos;
const int start_perf_next_well = connpos + num_perf_this_well;
// make sure the information from wells_ecl consistent with wells
assert(n_activeperf == (start_perf_next_well - start_perf));
if (pu.phase_used[Gas]) {
const int gaspos = pu.phase_pos[Gas];
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
// it will probably benefit the standard well too, while it needs to be justified
// TODO: to see if this strategy can benefit StandardWell too
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
// maybe the best way is to initialize the fractions first then get the rates
for (int perf = 0; perf < n_activeperf; perf++) {
const int perf_pos = start_perf + perf;
perfPhaseRates()[np * perf_pos + gaspos] *= 100.;
}
}
const std::vector<double> perforation_rates(perfPhaseRates().begin() + np * start_perf,
perfPhaseRates().begin() + np * start_perf_next_well); // the perforation rates for this well
std::vector<double> segment_rates;
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates);
std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(seg_rates_));
}
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
// which requres the ordering is successful
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
// improved during the solveWellEq process
{
// top segment is always the first one, and its pressure is the well bhp
seg_press_.push_back(bhp()[w]);
const int top_segment = top_segment_index_[w];
const int start_perf = connpos;
for (int seg = 1; seg < well_nseg; ++seg) {
if ( !segment_perforations[seg].empty() ) {
const int first_perf = segment_perforations[seg][0];
seg_press_.push_back(perfPress()[start_perf + first_perf]);
} else {
// seg_press_.push_back(bhp); // may not be a good decision
// using the outlet segment pressure // it needs the ordering is correct
const int outlet_seg = segment_set[seg].outletSegment();
seg_press_.push_back(
seg_press_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]);
}
}
}
}
connpos += num_perf_this_well;
}
assert(int(seg_press_.size()) == nseg_);
assert(int(seg_rates_.size()) == nseg_ * numPhases() );
seg_pressdrop_.assign(nseg_, 0.);
seg_pressdrop_hydorstatic_.assign(nseg_, 0.);
seg_pressdrop_friction_.assign(nseg_, 0.);
seg_pressdrop_acceleration_.assign(nseg_, 0.);
if (prev_well_state && !prev_well_state->wellMap().empty()) {
// copying MS well related
const auto& end = prev_well_state->wellMap().end();
const int np = numPhases();
for (int w = 0; w < nw; ++w) {
const auto& it = prev_well_state->wellMap().find( wells_ecl[w].name() );
if (it != end) { // the well is found in the prev_well_state
// TODO: the well with same name can change a lot, like they might not have same number of segments
// we need to handle that later.
// for now, we just copy them.
const int old_index_well = (*it).second[0];
const int new_index_well = w;
const int old_top_segment_index = prev_well_state->topSegmentIndex(old_index_well);
const int new_top_segmnet_index = topSegmentIndex(new_index_well);
int number_of_segment = 0;
// if it is the last well in list
if (new_index_well == int(top_segment_index_.size()) - 1) {
number_of_segment = nseg_ - new_top_segmnet_index;
} else {
number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segmnet_index;
}
for (int i = 0; i < number_of_segment * np; ++i) {
seg_rates_[new_top_segmnet_index * np + i] = prev_well_state->segRates()[old_top_segment_index * np + i];
}
for (int i = 0; i < number_of_segment; ++i) {
seg_press_[new_top_segmnet_index + i] = prev_well_state->segPress()[old_top_segment_index + i];
}
}
}
}
}
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates)
{
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
// the first segment is always the top segment, its rates should be equal to the well rates.
assert(segment_inlets.size() == segment_perforations.size());
const int well_nseg = segment_inlets.size();
if (segment == 0) { // beginning the calculation
segment_rates.resize(np * well_nseg, 0.0);
}
// contributions from the perforations belong to this segment
for (const int& perf : segment_perforations[segment]) {
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
}
}
for (const int& inlet_seg : segment_inlets[segment]) {
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
}
}
}
bool effectiveEventsOccurred(const int w) const {
return effective_events_occurred_[w];
}
void setEffectiveEventsOccurred(const int w, const bool effective_events_occurred) {
effective_events_occurred_[w] = effective_events_occurred;
}
const std::vector<int>& firstPerfIndex() const
{
return first_perf_index_;
}
/// One rate pr well connection.
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
/// One rate pr well
double solventWellRate(const int w) const {
return std::accumulate(&perfRateSolvent_[0] + first_perf_index_[w], &perfRateSolvent_[0] + first_perf_index_[w+1], 0.0);
}
/// One rate pr well connection.
std::vector<double>& perfRatePolymer() { return perfRatePolymer_; }
const std::vector<double>& perfRatePolymer() const { return perfRatePolymer_; }
/// One rate pr well
double polymerWellRate(const int w) const {
return std::accumulate(&perfRatePolymer_[0] + first_perf_index_[w], &perfRatePolymer_[0] + first_perf_index_[w+1], 0.0);
}
/// One rate pr well connection.
std::vector<double>& perfRateBrine() { return perfRateBrine_; }
const std::vector<double>& perfRateBrine() const { return perfRateBrine_; }
/// One rate pr well
double brineWellRate(const int w) const {
return std::accumulate(&perfRateBrine_[0] + first_perf_index_[w], &perfRateBrine_[0] + first_perf_index_[w+1], 0.0);
}
std::vector<double>& wellReservoirRates()
{
return well_reservoir_rates_;
}
const std::vector<double>& wellReservoirRates() const
{
return well_reservoir_rates_;
}
std::vector<double>& wellDissolvedGasRates()
{
return well_dissolved_gas_rates_;
}
std::vector<double>& wellVaporizedOilRates()
{
return well_vaporized_oil_rates_;
}
const std::vector<double>& segRates() const
{
return seg_rates_;
}
std::vector<double>& segRates()
{
return seg_rates_;
}
const std::vector<double>& segPress() const
{
return seg_press_;
}
std::vector<double>& segPressDrop()
{
return seg_pressdrop_;
}
const std::vector<double>& segPressDrop() const
{
return seg_pressdrop_;
}
std::vector<double>& segPressDropFriction()
{
return seg_pressdrop_friction_;
}
const std::vector<double>& segPressDropFriction() const
{
return seg_pressdrop_friction_;
}
std::vector<double>& segPressDropHydroStatic()
{
return seg_pressdrop_hydorstatic_;
}
const std::vector<double>& segPressDropHydroStatic() const
{
return seg_pressdrop_hydorstatic_;
}
std::vector<double>& segPressDropAcceleration()
{
return seg_pressdrop_acceleration_;
}
const std::vector<double>& segPressDropAcceleration() const
{
return seg_pressdrop_acceleration_;
}
std::vector<double>& segPress()
{
return seg_press_;
}
int numSegment() const
{
return nseg_;
}
int topSegmentIndex(const int w) const
{
assert(w < int(top_segment_index_.size()) );
return top_segment_index_[w];
}
std::vector<double>& productivityIndex() {
return productivity_index_;
}
const std::vector<double>& productivityIndex() const {
return productivity_index_;
}
std::vector<double>& wellPotentials() {
return well_potentials_;
}
const std::vector<double>& wellPotentials() const {
return well_potentials_;
}
std::vector<double>& perfThroughput() {
return perf_water_throughput_;
}
const std::vector<double>& perfThroughput() const {
return perf_water_throughput_;
}
std::vector<double>& perfSkinPressure() {
return perf_skin_pressure_;
}
const std::vector<double>& perfSkinPressure() const {
return perf_skin_pressure_;
}
std::vector<double>& perfWaterVelocity() {
return perf_water_velocity_;
}
const std::vector<double>& perfWaterVelocity() const {
return perf_water_velocity_;
}
virtual void shutWell(int well_index) override {
WellState::shutWell(well_index);
const int np = numPhases();
for (int p = 0; p < np; ++p)
this->well_reservoir_rates_[np * well_index + p] = 0;
}
template<class Comm>
void communicateGroupRates(const Comm& comm)
{
// Note that injection_group_vrep_rates is handled separate from
// the forAllGroupData() function, since it contains single doubles,
// not vectors.
// Create a function that calls some function
// for all the individual data items to simplify
// the further code.
auto forAllGroupData = [&](auto& func) {
for (auto& x : injection_group_rein_rates) {
func(x.second);
}
for (auto& x : production_group_reduction_rates) {
func(x.second);
}
for (auto& x : injection_group_reduction_rates) {
func(x.second);
}
for (auto& x : injection_group_reservoir_rates) {
func(x.second);
}
for (auto& x : production_group_rates) {
func(x.second);
}
for (auto& x : well_rates) {
func(x.second);
}
};
// Compute the size of the data.
std::size_t sz = 0;
auto computeSize = [&sz](const auto& v) {
sz += v.size();
};
forAllGroupData(computeSize);
sz += injection_group_vrep_rates.size();
// Make a vector and collect all data into it.
std::vector<double> data(sz);
std::size_t pos = 0;
auto collect = [&data, &pos](const auto& v) {
for (const auto& x : v) {
data[pos++] = x;
}
};
forAllGroupData(collect);
for (const auto& x : injection_group_vrep_rates) {
data[pos++] = x.second;
}
assert(pos == sz);
// Communicate it with a single sum() call.
comm.sum(data.data(), data.size());
// Distribute the summed vector to the data items.
pos = 0;
auto distribute = [&data, &pos](auto& v) {
for (auto& x : v) {
x = data[pos++];
}
};
forAllGroupData(distribute);
for (auto& x : injection_group_vrep_rates) {
x.second = data[pos++];
}
assert(pos == sz);
}
template<class Comm>
void updateGlobalIsGrup(const Schedule& schedule, const int reportStepIdx, const Comm& comm)
{
std::fill(globalIsInjectionGrup_.begin(), globalIsInjectionGrup_.end(), 0);
std::fill(globalIsProductionGrup_.begin(), globalIsProductionGrup_.end(), 0);
int global_well_index = 0;
const auto& end = wellMap().end();
for (const auto& well : schedule.getWells(reportStepIdx)) {
// Build global name->index map.
wellNameToGlobalIdx_[well.name()] = global_well_index;
// For wells on this process...
const auto& it = wellMap().find( well.name());
if (it != end) {
// ... set the GRUP/not GRUP states.
const int well_index = it->second[0];
if (!this->open_for_output_[well_index]) {
// Well is shut.
if (well.isInjector()) {
globalIsInjectionGrup_[global_well_index] = 0;
} else {
globalIsProductionGrup_[global_well_index] = 0;
}
} else {
if (well.isInjector()) {
globalIsInjectionGrup_[global_well_index] = (currentInjectionControls()[well_index] == Well::InjectorCMode::GRUP);
} else {
globalIsProductionGrup_[global_well_index] = (currentProductionControls()[well_index] == Well::ProducerCMode::GRUP);
}
}
}
++global_well_index;
}
comm.sum(globalIsInjectionGrup_.data(), globalIsInjectionGrup_.size());
comm.sum(globalIsProductionGrup_.data(), globalIsProductionGrup_.size());
}
bool isInjectionGrup(const std::string& name) const {
auto it = wellNameToGlobalIdx_.find(name);
if (it == wellNameToGlobalIdx_.end())
OPM_THROW(std::logic_error, "Could not find global injection group for well " << name);
return globalIsInjectionGrup_[it->second] != 0;
}
bool isProductionGrup(const std::string& name) const {
auto it = wellNameToGlobalIdx_.find(name);
if (it == wellNameToGlobalIdx_.end())
OPM_THROW(std::logic_error, "Could not find global production group for well " << name);
return globalIsProductionGrup_[it->second] != 0;
}
private:
std::vector<double> perfphaserates_;
// vector with size number of wells +1.
// iterate over all perforations of a given well
// for (int perf = first_perf_index_[well_index]; perf < first_perf_index_[well_index+1]; ++perf)
std::vector<int> first_perf_index_;
std::vector<Opm::Well::InjectorCMode> current_injection_controls_;
std::vector<Well::ProducerCMode> current_production_controls_;
// size of global number of wells
std::vector<int> globalIsInjectionGrup_;
std::vector<int> globalIsProductionGrup_;
std::map<std::string, int> wellNameToGlobalIdx_;
std::map<std::string, Group::ProductionCMode> current_production_group_controls_;
std::map<std::pair<Opm::Phase, std::string>, Group::InjectionCMode> current_injection_group_controls_;
std::map<std::string, std::vector<double>> well_rates;
std::map<std::string, std::vector<double>> production_group_rates;
std::map<std::string, std::vector<double>> production_group_reduction_rates;
std::map<std::string, std::vector<double>> injection_group_reduction_rates;
std::map<std::string, std::vector<double>> injection_group_reservoir_rates;
std::map<std::string, std::vector<double>> injection_group_potentials;
std::map<std::string, double> injection_group_vrep_rates;
std::map<std::string, std::vector<double>> injection_group_rein_rates;
std::map<std::string, double> group_grat_target_from_sales;
std::vector<double> perfRateSolvent_;
// only for output
std::vector<double> perfRatePolymer_;
std::vector<double> perfRateBrine_;
// it is the throughput of water flow through the perforations
// it is used as a measure of formation damage around well-bore due to particle deposition
// it will only be used for injectors to check the injectivity
std::vector<double> perf_water_throughput_;
// skin pressure of peforation
// it will only be used for injectors to check the injectivity
std::vector<double> perf_skin_pressure_;
// it will only be used for injectors to check the injectivity
// water velocity of perforation
std::vector<double> perf_water_velocity_;
// phase rates under reservoir condition for wells
// or voidage phase rates
std::vector<double> well_reservoir_rates_;
// dissolved gas rates or solution gas production rates
// should be zero for injection wells
std::vector<double> well_dissolved_gas_rates_;
// vaporized oil rates or solution oil producation rates
// should be zero for injection wells
std::vector<double> well_vaporized_oil_rates_;
// some events happens to the well, like this well is a new well
// or new well control keywords happens
// \Note: for now, only WCON* keywords, and well status change is considered
std::vector<bool> effective_events_occurred_;
// MS well related
// for StandardWell, the number of segments will be one
std::vector<double> seg_rates_;
std::vector<double> seg_press_;
// The following data are only recorded for output
// pressure drop
std::vector<double> seg_pressdrop_;
// frictional pressure drop
std::vector<double> seg_pressdrop_friction_;
// hydrostatic pressure drop
std::vector<double> seg_pressdrop_hydorstatic_;
// accelerational pressure drop
std::vector<double> seg_pressdrop_acceleration_;
// the index of the top segments, which is used to locate the
// multisegment well related information in WellState
std::vector<int> top_segment_index_;
int nseg_; // total number of the segments
// Productivity Index
std::vector<double> productivity_index_;
// Well potentials
std::vector<double> well_potentials_;
/// Map segment index to segment number, mostly for MS wells.
///
/// Segment number (one-based) of j-th segment in i-th well is
/// \code
/// const auto top = topSegmentIndex(i);
/// const auto seg_No = seg_number_[top + j];
/// \end
std::vector<int> seg_number_;
::Opm::data::Segment
reportSegmentResults(const PhaseUsage& pu,
const int well_id,
const int seg_ix,
const int seg_no) const
{
auto seg_res = ::Opm::data::Segment{};
const auto seg_dof =
this->topSegmentIndex(well_id) + seg_ix;
const auto* rate =
&this->segRates()[seg_dof * this->numPhases()];
{
using Value =::Opm::data::SegmentPressures::Value;
auto& segpress = seg_res.pressures;
segpress[Value::Pressure] = this->segPress()[seg_dof];
segpress[Value::PDrop] = this->segPressDrop()[seg_dof];
segpress[Value::PDropHydrostatic] = this->segPressDropHydroStatic()[seg_dof];
segpress[Value::PDropFriction] = this->segPressDropFriction()[seg_dof];
segpress[Value::PDropAccel] = this->segPressDropAcceleration()[seg_dof];
}
if (pu.phase_used[Water]) {
seg_res.rates.set(data::Rates::opt::wat,
rate[pu.phase_pos[Water]]);
}
if (pu.phase_used[Oil]) {
seg_res.rates.set(data::Rates::opt::oil,
rate[pu.phase_pos[Oil]]);
}
if (pu.phase_used[Gas]) {
seg_res.rates.set(data::Rates::opt::gas,
rate[pu.phase_pos[Gas]]);
}
seg_res.segNumber = seg_no;
return seg_res;
}
int numSegments(const int well_id) const
{
const auto topseg = this->topSegmentIndex(well_id);
return (well_id + 1 == this->numWells()) // Last well?
? (this->numSegment() - topseg)
: (this->topSegmentIndex(well_id + 1) - topseg);
}
int segmentNumber(const int well_id, const int seg_id) const
{
const auto top_offset = this->topSegmentIndex(well_id);
return this->seg_number_[top_offset + seg_id];
}
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED