mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-27 18:16:26 -06:00
f6c835298a
- the residual now does not consider constraints anymore - instead, the central place for constraints is the linearizer: - it gets a constraintsMap() method which is analogous to residual() but it stores (DOF index, constraints vector) pairs because typically only very few DOFs need to be constraint. - the newton method consults the linearizer's constraint map to update the error and the current iterative solution. the primary variables for constraint degrees of freedom are now directly copied from the 'Constraints' object to correctly handle pseudo primary variables. - the abilility to specify partial constraints is removed, i.e., it is no longer possible to constrain some equations/primary variables of a degree of freedom without having to specify all of them. The reason is that is AFAICS with partial constraint DOFs it is impossible to specify the pseudo primary variables for models which require them (PVS, black-oil). because of this, the reference solution for the Navier-Stokes test is updated. the test still oscillates like hell, but fixing this would require to implement spatial discretizations that are either better in general (e.g., DG methods) or adapted to Navier-Stokes problems (e.g., staggered grid FV methods). since both of these are currently quite low on my list of priorities, let's just accept the osscillations for now.
620 lines
20 KiB
C++
620 lines
20 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
Copyright (C) 2008-2013 by Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::FractureProblem
|
|
*/
|
|
#ifndef EWOMS_FRACTURE_PROBLEM_HH
|
|
#define EWOMS_FRACTURE_PROBLEM_HH
|
|
|
|
|
|
#if HAVE_DUNE_ALUGRID
|
|
// avoid reordering of macro elements, otherwise this problem won't work
|
|
#define DISABLE_ALUGRID_SFC_ORDERING 1
|
|
#include <dune/alugrid/grid.hh>
|
|
#include <dune/alugrid/dgf.hh>
|
|
#elif HAVE_ALUGRID
|
|
#include <dune/grid/alugrid.hh>
|
|
#include <dune/grid/io/file/dgfparser/dgfalu.hh>
|
|
#else
|
|
#error "No ALUGrid found"
|
|
#endif
|
|
|
|
#include <ewoms/models/discretefracture/discretefracturemodel.hh>
|
|
#include <ewoms/io/dgfgridmanager.hh>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
#include <opm/material/heatconduction/Somerton.hpp>
|
|
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/components/Dnapl.hpp>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <dune/common/fvector.hh>
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class FractureProblem;
|
|
}
|
|
|
|
namespace Ewoms {
|
|
namespace Properties {
|
|
// Create a type tag for the problem
|
|
NEW_TYPE_TAG(FractureProblem, INHERITS_FROM(DiscreteFractureModel));
|
|
|
|
// Set the grid type
|
|
SET_TYPE_PROP(
|
|
FractureProblem, Grid,
|
|
Dune::ALUGrid</*dim=*/2, /*dimWorld=*/2, Dune::simplex, Dune::nonconforming>);
|
|
|
|
// Set the GridManager property
|
|
SET_TYPE_PROP(FractureProblem, GridManager, Ewoms::DgfGridManager<TypeTag>);
|
|
|
|
// Set the problem property
|
|
SET_TYPE_PROP(FractureProblem, Problem, Ewoms::FractureProblem<TypeTag>);
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(FractureProblem, WettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
|
|
};
|
|
|
|
// Set the non-wetting phase
|
|
SET_PROP(FractureProblem, NonwettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> > type;
|
|
};
|
|
|
|
// Set the material Law
|
|
SET_PROP(FractureProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
|
|
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>
|
|
Traits;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
typedef Opm::RegularizedBrooksCorey<Traits> EffectiveLaw;
|
|
// typedef RegularizedVanGenuchten<Traits> EffectiveLaw;
|
|
// typedef LinearMaterial<Traits> EffectiveLaw;
|
|
public:
|
|
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
|
|
};
|
|
|
|
// Enable the energy equation
|
|
SET_BOOL_PROP(FractureProblem, EnableEnergy, true);
|
|
|
|
// Set the heat conduction law
|
|
SET_PROP(FractureProblem, HeatConductionLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
typedef Opm::Somerton<FluidSystem, Scalar> type;
|
|
};
|
|
|
|
// Disable gravity
|
|
SET_BOOL_PROP(FractureProblem, EnableGravity, false);
|
|
|
|
// For this problem, we use constraints to specify the left boundary
|
|
SET_BOOL_PROP(FractureProblem, EnableConstraints, true);
|
|
|
|
// Set the default value for the file name of the grid
|
|
SET_STRING_PROP(FractureProblem, GridFile, "data/fracture.art.dgf");
|
|
|
|
// Set the default value for the end time
|
|
SET_SCALAR_PROP(FractureProblem, EndTime, 3e3);
|
|
|
|
// Set the default value for the initial time step size
|
|
SET_SCALAR_PROP(FractureProblem, InitialTimeStepSize, 100);
|
|
} // namespace Properties
|
|
} // namespace Ewoms
|
|
|
|
namespace Ewoms {
|
|
/*!
|
|
* \ingroup TestProblems
|
|
*
|
|
* \brief Two-phase problem which involves fractures
|
|
*
|
|
* The domain is initially completely saturated by the oil phase,
|
|
* except for the left side, which is fully water saturated. Since the
|
|
* capillary pressure in the fractures is lower than in the rock
|
|
* matrix and the material is hydrophilic, water infiltrates through
|
|
* the fractures and gradually pushes the oil out on the right side,
|
|
* where the pressure is kept constant.
|
|
*/
|
|
template <class TypeTag>
|
|
class FractureProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, WettingPhase) WettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, NonwettingPhase) NonwettingPhase;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
|
|
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLawParams) HeatConductionLawParams;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
|
|
|
|
enum {
|
|
// phase indices
|
|
wettingPhaseIdx = MaterialLaw::wettingPhaseIdx,
|
|
nonWettingPhaseIdx = MaterialLaw::nonWettingPhaseIdx,
|
|
|
|
// number of phases
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// Grid and world dimension
|
|
dim = GridView::dimension,
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
typedef Opm::ImmiscibleFluidState<Scalar, FluidSystem> FluidState;
|
|
|
|
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
template <int dim>
|
|
struct FaceLayout
|
|
{
|
|
bool contains(Dune::GeometryType gt)
|
|
{ return gt.dim() == dim - 1; }
|
|
};
|
|
typedef Dune::MultipleCodimMultipleGeomTypeMapper<GridView, FaceLayout> FaceMapper;
|
|
|
|
typedef Ewoms::FractureMapper<TypeTag> FractureMapper;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
FractureProblem(Simulator &simulator)
|
|
: ParentType(simulator)
|
|
{ }
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::finishInit
|
|
*/
|
|
void finishInit()
|
|
{
|
|
ParentType::finishInit();
|
|
|
|
eps_ = 3e-6;
|
|
temperature_ = 273.15 + 20; // -> 20°C
|
|
|
|
matrixMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
|
|
matrixMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
|
|
fractureMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.0);
|
|
fractureMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
|
|
|
|
#if 0 // linear
|
|
matrixMaterialParams_.setEntryPC(0.0);
|
|
matrixMaterialParams_.setMaxPC(2000.0);
|
|
fractureMaterialParams_.setEntryPC(0.0);
|
|
fractureMaterialParams_.setMaxPC(1000.0);
|
|
#endif
|
|
|
|
#if 1 // Brooks-Corey
|
|
matrixMaterialParams_.setEntryPressure(2000);
|
|
matrixMaterialParams_.setLambda(2.0);
|
|
matrixMaterialParams_.setPcLowSw(1e-1);
|
|
fractureMaterialParams_.setEntryPressure(1000);
|
|
fractureMaterialParams_.setLambda(2.0);
|
|
fractureMaterialParams_.setPcLowSw(5e-2);
|
|
#endif
|
|
|
|
#if 0 // van Genuchten
|
|
matrixMaterialParams_.setVgAlpha(0.0037);
|
|
matrixMaterialParams_.setVgN(4.7);
|
|
fractureMaterialParams_.setVgAlpha(0.0025);
|
|
fractureMaterialParams_.setVgN(4.7);
|
|
#endif
|
|
|
|
matrixMaterialParams_.finalize();
|
|
fractureMaterialParams_.finalize();
|
|
|
|
matrixK_ = this->toDimMatrix_(1e-15); // m^2
|
|
fractureK_ = this->toDimMatrix_(1e5 * 1e-15); // m^2
|
|
|
|
matrixPorosity_ = 0.10;
|
|
fracturePorosity_ = 0.25;
|
|
fractureWidth_ = 1e-3; // [m]
|
|
|
|
// parameters for the somerton law of heat conduction
|
|
computeHeatCondParams_(heatCondParams_, matrixPorosity_);
|
|
}
|
|
|
|
/*!
|
|
* \name Auxiliary methods
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::name
|
|
*/
|
|
std::string name() const
|
|
{
|
|
std::ostringstream oss;
|
|
oss << "fracture_" << Model::name();
|
|
return oss.str();
|
|
}
|
|
|
|
/*!
|
|
* \brief Called directly after the time integration.
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
#ifndef NDEBUG
|
|
// checkConservativeness() does not include the effect of constraints, so we
|
|
// disable it for this problem...
|
|
//this->model().checkConservativeness();
|
|
|
|
// Calculate storage terms
|
|
EqVector storage;
|
|
this->model().globalStorage(storage);
|
|
|
|
// Write mass balance information for rank 0
|
|
if (this->gridView().comm().rank() == 0) {
|
|
std::cout << "Storage: " << storage << std::endl << std::flush;
|
|
}
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return temperature_; }
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Soil parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{ return matrixK_; }
|
|
|
|
/*!
|
|
* \brief Intrinsic permeability of fractures.
|
|
*
|
|
* \copydoc Doxygen::contextParams
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &fractureIntrinsicPermeability(const Context &context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{ return fractureK_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return matrixPorosity_; }
|
|
|
|
/*!
|
|
* \brief The porosity inside the fractures.
|
|
*
|
|
* \copydoc Doxygen::contextParams
|
|
*/
|
|
template <class Context>
|
|
Scalar fracturePorosity(const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{ return fracturePorosity_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return matrixMaterialParams_; }
|
|
|
|
/*!
|
|
* \brief The parameters for the material law inside the fractures.
|
|
*
|
|
* \copydoc Doxygen::contextParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &fractureMaterialLawParams(const Context &context,
|
|
unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{ return fractureMaterialParams_; }
|
|
|
|
/*!
|
|
* \brief Returns the object representating the fracture topology.
|
|
*/
|
|
const FractureMapper &fractureMapper() const
|
|
{ return this->simulator().gridManager().fractureMapper(); }
|
|
|
|
/*!
|
|
* \brief Returns the width of the fracture.
|
|
*
|
|
* \todo This method should get one face index instead of two
|
|
* vertex indices. This probably requires a new context
|
|
* class, though.
|
|
*
|
|
* \param context The execution context.
|
|
* \param spaceIdx1 The local index of the edge's first edge.
|
|
* \param spaceIdx2 The local index of the edge's second edge.
|
|
* \param timeIdx The index used by the time discretization.
|
|
*/
|
|
template <class Context>
|
|
Scalar fractureWidth(const Context &context, unsigned spaceIdx1, unsigned spaceIdx2,
|
|
unsigned timeIdx) const
|
|
{ return fractureWidth_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::heatConductionParams
|
|
*/
|
|
template <class Context>
|
|
const HeatConductionLawParams &
|
|
heatConductionParams(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
|
|
{ return heatCondParams_; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
|
|
*
|
|
* In this case, we assume the rock-matrix to be granite.
|
|
*/
|
|
template <class Context>
|
|
Scalar heatCapacitySolid(const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
return 790 // specific heat capacity of granite [J / (kg K)]
|
|
* 2700; // density of granite [kg/m^3]
|
|
}
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
// \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values, const Context &context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onRightBoundary_(pos)) {
|
|
// on the right boundary, we impose a free-flow
|
|
// (i.e. Dirichlet) condition
|
|
FluidState fluidState;
|
|
fluidState.setTemperature(temperature_);
|
|
|
|
fluidState.setSaturation(wettingPhaseIdx, 0.0);
|
|
fluidState.setSaturation(nonWettingPhaseIdx,
|
|
1.0 - fluidState.saturation(wettingPhaseIdx));
|
|
|
|
fluidState.setPressure(wettingPhaseIdx, 1e5);
|
|
fluidState.setPressure(nonWettingPhaseIdx, fluidState.pressure(wettingPhaseIdx));
|
|
|
|
// set a free flow (i.e. Dirichlet) boundary
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fluidState);
|
|
}
|
|
else
|
|
// for the upper, lower and left boundaries, use a no-flow
|
|
// condition (i.e. a Neumann 0 condition)
|
|
values.setNoFlow();
|
|
}
|
|
|
|
// \}
|
|
|
|
/*!
|
|
* \name Volumetric terms
|
|
*/
|
|
// \{
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::constraints
|
|
*/
|
|
template <class Context>
|
|
void constraints(Constraints &constraints, const Context &context,
|
|
unsigned spaceIdx, unsigned timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (!onLeftBoundary_(pos))
|
|
// only impose constraints adjacent to the left boundary
|
|
return;
|
|
|
|
unsigned globalIdx = context.globalSpaceIndex(spaceIdx, timeIdx);
|
|
if (!fractureMapper().isFractureVertex(globalIdx)) {
|
|
// do not impose constraints if the finite volume does
|
|
// not contain fractures.
|
|
return;
|
|
}
|
|
|
|
// if the current finite volume is on the left boundary
|
|
// and features a fracture, specify the fracture fluid
|
|
// state.
|
|
FluidState fractureFluidState;
|
|
fractureFluidState.setTemperature(temperature_ + 10.0);
|
|
|
|
fractureFluidState.setSaturation(wettingPhaseIdx, 1.0);
|
|
fractureFluidState.setSaturation(nonWettingPhaseIdx,
|
|
1.0 - fractureFluidState.saturation(
|
|
wettingPhaseIdx));
|
|
|
|
Scalar pCFracture[numPhases];
|
|
MaterialLaw::capillaryPressures(pCFracture, fractureMaterialParams_,
|
|
fractureFluidState);
|
|
|
|
fractureFluidState.setPressure(wettingPhaseIdx, /*pressure=*/1.0e5);
|
|
fractureFluidState.setPressure(nonWettingPhaseIdx,
|
|
fractureFluidState.pressure(wettingPhaseIdx)
|
|
+ (pCFracture[nonWettingPhaseIdx]
|
|
- pCFracture[wettingPhaseIdx]));
|
|
|
|
constraints.setActive(true);
|
|
constraints.assignNaiveFromFracture(fractureFluidState,
|
|
matrixMaterialParams_);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
FluidState fluidState;
|
|
fluidState.setTemperature(temperature_);
|
|
fluidState.setPressure(FluidSystem::wettingPhaseIdx, /*pressure=*/1e5);
|
|
fluidState.setPressure(nonWettingPhaseIdx, fluidState.pressure(wettingPhaseIdx));
|
|
|
|
fluidState.setSaturation(wettingPhaseIdx, 0.0);
|
|
fluidState.setSaturation(nonWettingPhaseIdx,
|
|
1.0 - fluidState.saturation(wettingPhaseIdx));
|
|
|
|
values.assignNaive(fluidState);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
|
|
unsigned timeIdx) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
// \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
void computeHeatCondParams_(HeatConductionLawParams ¶ms, Scalar poro)
|
|
{
|
|
Scalar lambdaGranite = 2.8; // [W / (K m)]
|
|
|
|
// create a Fluid state which has all phases present
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setTemperature(293.15);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
fs.setPressure(phaseIdx, 1.0135e5);
|
|
}
|
|
|
|
typename FluidSystem::ParameterCache paramCache;
|
|
paramCache.updateAll(fs);
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
|
|
fs.setDensity(phaseIdx, rho);
|
|
}
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
Scalar lambdaSaturated;
|
|
if (FluidSystem::isLiquid(phaseIdx)) {
|
|
Scalar lambdaFluid = FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
|
|
lambdaSaturated =
|
|
std::pow(lambdaGranite, (1 - poro))
|
|
+ std::pow(lambdaFluid, poro);
|
|
}
|
|
else
|
|
lambdaSaturated = std::pow(lambdaGranite, (1 - poro));
|
|
|
|
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
|
|
}
|
|
|
|
Scalar lambdaVac = std::pow(lambdaGranite, (1 - poro));
|
|
params.setVacuumLambda(lambdaVac);
|
|
}
|
|
|
|
DimMatrix matrixK_;
|
|
DimMatrix fractureK_;
|
|
|
|
Scalar matrixPorosity_;
|
|
Scalar fracturePorosity_;
|
|
|
|
Scalar fractureWidth_;
|
|
|
|
MaterialLawParams fractureMaterialParams_;
|
|
MaterialLawParams matrixMaterialParams_;
|
|
|
|
HeatConductionLawParams heatCondParams_;
|
|
|
|
Scalar temperature_;
|
|
Scalar eps_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif // EWOMS_FRACTURE_PROBLEM_HH
|