opm-simulators/examples/problems/stokes2ctestproblem.hh
Andreas Lauser f6c835298a rewrite the mechanism to enforce constraint degrees of freedom
- the residual now does not consider constraints anymore
- instead, the central place for constraints is the linearizer:
  - it gets a constraintsMap() method which is analogous to residual()
    but it stores (DOF index, constraints vector) pairs because
    typically only very few DOFs need to be constraint.
- the newton method consults the linearizer's constraint map to update
  the error and the current iterative solution. the primary variables
  for constraint degrees of freedom are now directly copied from the
  'Constraints' object to correctly handle pseudo primary variables.
- the abilility to specify partial constraints is removed, i.e., it is
  no longer possible to constrain some equations/primary variables of
  a degree of freedom without having to specify all of them. The
  reason is that is AFAICS with partial constraint DOFs it is
  impossible to specify the pseudo primary variables for models which
  require them (PVS, black-oil).

  because of this, the reference solution for the Navier-Stokes test
  is updated. the test still oscillates like hell, but fixing this
  would require to implement spatial discretizations that are either
  better in general (e.g., DG methods) or adapted to Navier-Stokes
  problems (e.g., staggered grid FV methods). since both of these are
  currently quite low on my list of priorities, let's just accept the
  osscillations for now.
2016-01-05 11:54:26 +01:00

308 lines
9.2 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2009-2013 by Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
* \copydoc Ewoms::Stokes2cTestProblem
*/
#ifndef EWOMS_STOKES_2C_TEST_PROBLEM_HH
#define EWOMS_STOKES_2C_TEST_PROBLEM_HH
#include <ewoms/models/stokes/stokesmodel.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
template <class TypeTag>
class Stokes2cTestProblem;
}
namespace Ewoms {
//////////
// Specify the properties for the stokes2c problem
//////////
namespace Properties {
NEW_TYPE_TAG(Stokes2cTestProblem, INHERITS_FROM(StokesModel));
// Set the grid type
SET_TYPE_PROP(Stokes2cTestProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(Stokes2cTestProblem, Problem, Ewoms::Stokes2cTestProblem<TypeTag>);
//! Select the fluid system
SET_TYPE_PROP(Stokes2cTestProblem, FluidSystem,
Opm::FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>);
//! Select the phase to be considered
SET_INT_PROP(Stokes2cTestProblem, StokesPhaseIndex,
GET_PROP_TYPE(TypeTag, FluidSystem)::gasPhaseIdx);
// Disable gravity
SET_BOOL_PROP(Stokes2cTestProblem, EnableGravity, false);
// Enable constraints
SET_BOOL_PROP(Stokes2cTestProblem, EnableConstraints, true);
// Default simulation end time [s]
SET_SCALAR_PROP(Stokes2cTestProblem, EndTime, 2.0);
// Default initial time step size [s]
SET_SCALAR_PROP(Stokes2cTestProblem, InitialTimeStepSize, 0.1);
// Default grid file to load
SET_STRING_PROP(Stokes2cTestProblem, GridFile, "data/test_stokes2c.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup Stokes2cModel
* \ingroup TestProblems
*
* \brief Stokes transport problem with humid air flowing from the
* left to the right.
*
* The domain is sized 1m times 1m. The boundaries are specified using
* constraints, with finite volumes on the left side of the domain
* exhibiting slightly higher humitiy than the ones on the right.
*/
template <class TypeTag>
class Stokes2cTestProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
enum { dimWorld = GridView::dimensionworld };
enum { numComponents = FluidSystem::numComponents };
enum {
// copy some indices for convenience
conti0EqIdx = Indices::conti0EqIdx,
momentum0EqIdx = Indices::momentum0EqIdx,
velocity0Idx = Indices::velocity0Idx,
moleFrac1Idx = Indices::moleFrac1Idx,
pressureIdx = Indices::pressureIdx,
H2OIdx = FluidSystem::H2OIdx,
AirIdx = FluidSystem::AirIdx
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
Stokes2cTestProblem(Simulator &simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 1e-6;
// initialize the tables of the fluid system
FluidSystem::init();
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "stokes2ctest"; }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \brief StokesProblem::temperature
*
* This problem assumes a temperature of 10 degrees Celsius.
*/
template <class Context>
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return 273.15 + 10; /* -> 10 deg C */ }
// \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* This problem uses an out-flow boundary on the lower edge of the
* domain, no-flow on the left and right edges and constrains the
* upper edge.
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
if (onLowerBoundary_(pos))
values.setOutFlow(context, spaceIdx, timeIdx);
else if (onUpperBoundary_(pos)) {
// upper boundary is constraint!
values = 0.0;
}
else {
// left and right boundaries
values.setNoFlow(context, spaceIdx, timeIdx);
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*
* For this method a parabolic velocity profile from left to
* right, atmospheric pressure and a mole fraction of water of
* 0.5% is set.
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
values = 0.0;
// parabolic profile
const Scalar v1 = 1.0;
values[velocity0Idx + 1] =
- v1
* (globalPos[0] - this->boundingBoxMin()[0])
* (this->boundingBoxMax()[0] - globalPos[0])
/ (0.25
* (this->boundingBoxMax()[0] - this->boundingBoxMin()[0])
* (this->boundingBoxMax()[0] - this->boundingBoxMin()[0]));
Scalar moleFrac[numComponents];
if (onUpperBoundary_(globalPos))
moleFrac[H2OIdx] = 0.005;
else
moleFrac[H2OIdx] = 0.007;
moleFrac[AirIdx] = 1.0 - moleFrac[H2OIdx];
values[pressureIdx] = 1e5;
values[velocity0Idx + 0] = 0.0;
values[moleFrac1Idx] = moleFrac[1];
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all conserved quantities
* is 0 everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ rate = Scalar(0.0); }
/*!
* \copydoc FvBaseProblem::constraints
*
* In this problem, the method sets the domain's lower edge to
* initial conditions.
*/
template <class Context>
void constraints(Constraints &constraints, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onUpperBoundary_(pos)) {
constraints.setActive(true);
initial(constraints, context, spaceIdx, timeIdx);
}
}
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &globalPos) const
{ return globalPos[1] > this->boundingBoxMax()[1] - eps_; }
Scalar eps_;
};
} // namespace Ewoms
#endif