opm-simulators/examples/problems/stokestestproblem.hh
Andreas Lauser f6c835298a rewrite the mechanism to enforce constraint degrees of freedom
- the residual now does not consider constraints anymore
- instead, the central place for constraints is the linearizer:
  - it gets a constraintsMap() method which is analogous to residual()
    but it stores (DOF index, constraints vector) pairs because
    typically only very few DOFs need to be constraint.
- the newton method consults the linearizer's constraint map to update
  the error and the current iterative solution. the primary variables
  for constraint degrees of freedom are now directly copied from the
  'Constraints' object to correctly handle pseudo primary variables.
- the abilility to specify partial constraints is removed, i.e., it is
  no longer possible to constrain some equations/primary variables of
  a degree of freedom without having to specify all of them. The
  reason is that is AFAICS with partial constraint DOFs it is
  impossible to specify the pseudo primary variables for models which
  require them (PVS, black-oil).

  because of this, the reference solution for the Navier-Stokes test
  is updated. the test still oscillates like hell, but fixing this
  would require to implement spatial discretizations that are either
  better in general (e.g., DG methods) or adapted to Navier-Stokes
  problems (e.g., staggered grid FV methods). since both of these are
  currently quite low on my list of priorities, let's just accept the
  osscillations for now.
2016-01-05 11:54:26 +01:00

315 lines
9.3 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
Copyright (C) 2012-2013 by Andreas Lauser
Copyright (C) 2012 by Klaus Mosthaf
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*!
* \file
*
* \copydoc Ewoms::StokesTestProblem
*/
#ifndef EWOMS_STOKES_TEST_PROBLEM_HH
#define EWOMS_STOKES_TEST_PROBLEM_HH
#include <ewoms/models/stokes/stokesmodel.hh>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/fluidsystems/GasPhase.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
namespace Ewoms {
template <class TypeTag>
class StokesTestProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(StokesTestProblem, INHERITS_FROM(StokesModel));
// Set the grid type
SET_TYPE_PROP(StokesTestProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(StokesTestProblem, Problem, Ewoms::StokesTestProblem<TypeTag>);
// Use the default fluid system of the Stokes model. It requires to
// specify a fluid, though.
SET_PROP(StokesTestProblem, Fluid)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
typedef Opm::GasPhase<Scalar, Opm::N2<Scalar> > type;
};
// Disable gravity
SET_BOOL_PROP(StokesTestProblem, EnableGravity, false);
// Enable constraints
SET_BOOL_PROP(StokesTestProblem, EnableConstraints, true);
// Default simulation end time [s]
SET_SCALAR_PROP(StokesTestProblem, EndTime, 10.0);
// Default initial time step size [s]
SET_SCALAR_PROP(StokesTestProblem, InitialTimeStepSize, 10.0);
// Default grid file to load
SET_STRING_PROP(StokesTestProblem, GridFile, "data/test_stokes.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup StokesModel
* \ingroup TestProblems
*
* \brief Stokes flow problem with nitrogen (\f$N_2\f$) flowing
* from the left to the right.
*
* The domain is sized 1m times 1m. The boundary conditions for the
* momentum balances are set to outflow on the right boundary and to
* no-flow at the top and bottom of the domain. For the mass balance
* equation, outflow boundary conditions are assumed on the right,
* free-flow on the left and no-flow at the top and bottom boundaries.
*/
template <class TypeTag>
class StokesTestProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Fluid) Fluid;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
enum {
// Number of equations and grid dimension
dimWorld = GridView::dimensionworld,
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
momentum0EqIdx = Indices::momentum0EqIdx,
// primary variable indices
velocity0Idx = Indices::velocity0Idx,
pressureIdx = Indices::pressureIdx
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, dimWorld> DimVector;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
StokesTestProblem(Simulator &simulator)
: ParentType(simulator)
{ eps_ = 1e-6; }
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "stokestest"; }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \brief StokesProblem::temperature
*
* This problem assumes a constant temperature of 10 degrees Celsius.
*/
template <class Context>
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return 273.15 + 10; } // -> 10 deg C
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* For this problem, we use an out-flow boundary on the right,
* no-flow at the top and at the bottom and the left boundary gets
* a parabolic velocity profile via constraints.
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
Scalar y = pos[1] - this->boundingBoxMin()[1];
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
// parabolic velocity profile
const Scalar maxVelocity = 1.0;
Scalar a = -4 * maxVelocity / (height * height);
Scalar b = -a * height;
Scalar c = 0;
DimVector velocity(0.0);
velocity[0] = a * y * y + b * y + c;
if (onRightBoundary_(pos))
values.setOutFlow(context, spaceIdx, timeIdx);
else if (onLeftBoundary_(pos)) {
// left boundary is constraint!
values = 0.0;
}
else {
// top and bottom
values.setNoFlow(context, spaceIdx, timeIdx);
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
Scalar y = pos[1] - this->boundingBoxMin()[1];
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
// parabolic velocity profile on boundaries
const Scalar maxVelocity = 1.0;
Scalar a = -4 * maxVelocity / (height * height);
Scalar b = -a * height;
Scalar c = 0;
DimVector velocity(0.0);
velocity[0] = a * y * y + b * y + c;
for (unsigned axisIdx = 0; axisIdx < dimWorld; ++axisIdx)
values[velocity0Idx + axisIdx] = velocity[axisIdx];
values[pressureIdx] = 1e5;
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all conserved quantities
* is 0 everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ rate = Scalar(0.0); }
/*!
* \copydoc FvBaseProblem::constraints
*
* For this problem, the left side of the domain gets a parabolic
* velocity profile using constraints.
*/
template <class Context>
void constraints(Constraints &constraints, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto &pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
constraints.setActive(true);
initial(constraints, context, spaceIdx, timeIdx);
}
}
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition &pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition &pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onBoundary_(const GlobalPosition &pos) const
{
return onLeftBoundary_(pos) || onRightBoundary_(pos)
|| onLowerBoundary_(pos) || onUpperBoundary_(pos);
}
Scalar eps_;
};
} // namespace Ewoms
#endif