mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-19 05:53:28 -06:00
dd77a39d95
Upstream (opm-parser) now provides a better Equil + EquilRecord, and simultaneously deprecated EquilWrapper. This patch fixes the resulting breakage. One important note: The new Equil does not expose integers for live oil/wet gas initialization procedure methods, but rather booleans through constRs/constRv methods. This is how the variable behaves according to the Eclipse reference manual (EQUIL keyword section). Code has been updated to reflect this.
865 lines
32 KiB
C++
865 lines
32 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED
|
|
#define OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED
|
|
|
|
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
#include <opm/core/utility/linearInterpolation.hpp>
|
|
#include <opm/core/utility/RegionMapping.hpp>
|
|
#include <opm/core/utility/RootFinders.hpp>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/InitConfig/Equil.hpp>
|
|
|
|
#include <memory>
|
|
|
|
|
|
/*
|
|
---- synopsis of EquilibrationHelpers.hpp ----
|
|
|
|
namespace Opm
|
|
{
|
|
namespace EQUIL {
|
|
|
|
template <class Props>
|
|
class DensityCalculator;
|
|
|
|
template <>
|
|
class DensityCalculator< BlackoilPropertiesInterface >;
|
|
|
|
namespace Miscibility {
|
|
class RsFunction;
|
|
class NoMixing;
|
|
class RsVD;
|
|
class RsSatAtContact;
|
|
}
|
|
|
|
template <class DensCalc>
|
|
class EquilReg;
|
|
|
|
|
|
struct PcEq;
|
|
|
|
inline double satFromPc(const BlackoilPropertiesInterface& props,
|
|
const int phase,
|
|
const int cell,
|
|
const double target_pc,
|
|
const bool increasing = false);
|
|
struct PcEqSum
|
|
inline double satFromSumOfPcs(const BlackoilPropertiesInterface& props,
|
|
const int phase1,
|
|
const int phase2,
|
|
const int cell,
|
|
const double target_pc);
|
|
} // namespace Equil
|
|
} // namespace Opm
|
|
|
|
---- end of synopsis of EquilibrationHelpers.hpp ----
|
|
*/
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
/**
|
|
* Types and routines that collectively implement a basic
|
|
* ECLIPSE-style equilibration-based initialisation scheme.
|
|
*
|
|
* This namespace is intentionally nested to avoid name clashes
|
|
* with other parts of OPM.
|
|
*/
|
|
namespace EQUIL {
|
|
|
|
|
|
template <class Props>
|
|
class DensityCalculator;
|
|
|
|
/**
|
|
* Facility for calculating phase densities based on the
|
|
* BlackoilPropertiesInterface.
|
|
*
|
|
* Implements the crucial <CODE>operator()(p,svol)</CODE>
|
|
* function that is expected by class EquilReg.
|
|
*/
|
|
template <>
|
|
class DensityCalculator< BlackoilPropertiesInterface > {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] props Implementation of the
|
|
* BlackoilPropertiesInterface.
|
|
*
|
|
* \param[in] c Single cell used as a representative cell
|
|
* in a PVT region.
|
|
*/
|
|
DensityCalculator(const BlackoilPropertiesInterface& props,
|
|
const int c)
|
|
: props_(props)
|
|
, c_(1, c)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Compute phase densities of all phases at phase point
|
|
* given by (pressure, surface volume) tuple.
|
|
*
|
|
* \param[in] p Fluid pressure.
|
|
*
|
|
* \param[in] T Temperature.
|
|
*
|
|
* \param[in] z Surface volumes of all phases.
|
|
*
|
|
* \return Phase densities at phase point.
|
|
*/
|
|
std::vector<double>
|
|
operator()(const double p,
|
|
const double T,
|
|
const std::vector<double>& z) const
|
|
{
|
|
const int np = props_.numPhases();
|
|
std::vector<double> A(np * np, 0);
|
|
|
|
assert (z.size() == std::vector<double>::size_type(np));
|
|
|
|
double* dAdp = 0;
|
|
props_.matrix(1, &p, &T, &z[0], &c_[0], &A[0], dAdp);
|
|
|
|
std::vector<double> rho(np, 0.0);
|
|
props_.density(1, &A[0], &c_[0], &rho[0]);
|
|
|
|
return rho;
|
|
}
|
|
|
|
private:
|
|
const BlackoilPropertiesInterface& props_;
|
|
const std::vector<int> c_;
|
|
};
|
|
|
|
|
|
/**
|
|
* Types and routines relating to phase mixing in
|
|
* equilibration calculations.
|
|
*/
|
|
namespace Miscibility {
|
|
|
|
/**
|
|
* Base class for phase mixing functions.
|
|
*/
|
|
class RsFunction
|
|
{
|
|
public:
|
|
/**
|
|
* Function call operator.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
virtual double operator()(const double depth,
|
|
const double press,
|
|
const double temp,
|
|
const double sat = 0.0) const = 0;
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "no phase mixing" policy.
|
|
*/
|
|
class NoMixing : public RsFunction {
|
|
public:
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press. In "no mixing
|
|
* policy", this is identically zero.
|
|
*/
|
|
double
|
|
operator()(const double /* depth */,
|
|
const double /* press */,
|
|
const double /* temp */,
|
|
const double /* sat */ = 0.0) const
|
|
{
|
|
return 0.0;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "dissolved gas-oil ratio"
|
|
* tabulated as a function of depth policy. Data
|
|
* typically taken from keyword 'RSVD'.
|
|
*/
|
|
class RsVD : public RsFunction {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] props property object
|
|
* \param[in] cell any cell in the pvt region
|
|
* \param[in] depth Depth nodes.
|
|
* \param[in] rs Dissolved gas-oil ratio at @c depth.
|
|
*/
|
|
RsVD(const BlackoilPropertiesInterface& props,
|
|
const int cell,
|
|
const std::vector<double>& depth,
|
|
const std::vector<double>& rs)
|
|
: props_(props)
|
|
, cell_(cell)
|
|
, depth_(depth)
|
|
, rs_(rs)
|
|
{
|
|
auto pu = props_.phaseUsage();
|
|
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
|
|
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1e100;
|
|
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
|
|
}
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double
|
|
operator()(const double depth,
|
|
const double press,
|
|
const double temp,
|
|
const double sat_gas = 0.0) const
|
|
{
|
|
if (sat_gas > 0.0) {
|
|
return satRs(press, temp);
|
|
} else {
|
|
return std::min(satRs(press, temp), linearInterpolation(depth_, rs_, depth));
|
|
}
|
|
}
|
|
|
|
private:
|
|
const BlackoilPropertiesInterface& props_;
|
|
const int cell_;
|
|
std::vector<double> depth_; /**< Depth nodes */
|
|
std::vector<double> rs_; /**< Dissolved gas-oil ratio */
|
|
double z_[BlackoilPhases::MaxNumPhases];
|
|
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
|
|
|
|
double satRs(const double press, const double temp) const
|
|
{
|
|
props_.matrix(1, &press, &temp, z_, &cell_, A_, 0);
|
|
// Rs/Bo is in the gas row and oil column of A_.
|
|
// 1/Bo is in the oil row and column.
|
|
// Recall also that it is stored in column-major order.
|
|
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
|
|
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
|
|
const int np = props_.numPhases();
|
|
return A_[np*opos + gpos] / A_[np*opos + opos];
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Type that implements "vaporized oil-gas ratio"
|
|
* tabulated as a function of depth policy. Data
|
|
* typically taken from keyword 'RVVD'.
|
|
*/
|
|
class RvVD : public RsFunction {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] props property object
|
|
* \param[in] cell any cell in the pvt region
|
|
* \param[in] depth Depth nodes.
|
|
* \param[in] rv Dissolved gas-oil ratio at @c depth.
|
|
*/
|
|
RvVD(const BlackoilPropertiesInterface& props,
|
|
const int cell,
|
|
const std::vector<double>& depth,
|
|
const std::vector<double>& rv)
|
|
: props_(props)
|
|
, cell_(cell)
|
|
, depth_(depth)
|
|
, rv_(rv)
|
|
{
|
|
auto pu = props_.phaseUsage();
|
|
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
|
|
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
|
|
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1e100;
|
|
}
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RV
|
|
* value.
|
|
*
|
|
* \return Vaporized oil-gas ratio (RV) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double
|
|
operator()(const double depth,
|
|
const double press,
|
|
const double temp,
|
|
const double sat_oil = 0.0 ) const
|
|
{
|
|
if (std::abs(sat_oil) > 1e-16) {
|
|
return satRv(press, temp);
|
|
} else {
|
|
return std::min(satRv(press, temp), linearInterpolation(depth_, rv_, depth));
|
|
}
|
|
}
|
|
|
|
private:
|
|
const BlackoilPropertiesInterface& props_;
|
|
const int cell_;
|
|
std::vector<double> depth_; /**< Depth nodes */
|
|
std::vector<double> rv_; /**< Vaporized oil-gas ratio */
|
|
double z_[BlackoilPhases::MaxNumPhases];
|
|
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
|
|
|
|
double satRv(const double press, const double temp) const
|
|
{
|
|
props_.matrix(1, &press, &temp, z_, &cell_, A_, 0);
|
|
// Rv/Bg is in the oil row and gas column of A_.
|
|
// 1/Bg is in the gas row and column.
|
|
// Recall also that it is stored in column-major order.
|
|
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
|
|
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
|
|
const int np = props_.numPhases();
|
|
return A_[np*gpos + opos] / A_[np*gpos + gpos];
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Class that implements "dissolved gas-oil ratio" (Rs)
|
|
* as function of depth and pressure as follows:
|
|
*
|
|
* 1. The Rs at the gas-oil contact is equal to the
|
|
* saturated Rs value, Rs_sat_contact.
|
|
*
|
|
* 2. The Rs elsewhere is equal to Rs_sat_contact, but
|
|
* constrained to the saturated value as given by the
|
|
* local pressure.
|
|
*
|
|
* This should yield Rs-values that are constant below the
|
|
* contact, and decreasing above the contact.
|
|
*/
|
|
class RsSatAtContact : public RsFunction {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] props property object
|
|
* \param[in] cell any cell in the pvt region
|
|
* \param[in] p_contact oil pressure at the contact
|
|
* \param[in] T_contact temperature at the contact
|
|
*/
|
|
RsSatAtContact(const BlackoilPropertiesInterface& props, const int cell, const double p_contact, const double T_contact)
|
|
: props_(props), cell_(cell)
|
|
{
|
|
auto pu = props_.phaseUsage();
|
|
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
|
|
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1e100;
|
|
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1.0;
|
|
rs_sat_contact_ = satRs(p_contact, T_contact);
|
|
}
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RS
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RS
|
|
* value.
|
|
*
|
|
* \return Dissolved gas-oil ratio (RS) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double
|
|
operator()(const double /* depth */,
|
|
const double press,
|
|
const double temp,
|
|
const double sat_gas = 0.0) const
|
|
{
|
|
if (sat_gas > 0.0) {
|
|
return satRs(press, temp);
|
|
} else {
|
|
return std::min(satRs(press, temp), rs_sat_contact_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const BlackoilPropertiesInterface& props_;
|
|
const int cell_;
|
|
double z_[BlackoilPhases::MaxNumPhases];
|
|
double rs_sat_contact_;
|
|
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
|
|
|
|
double satRs(const double press, const double temp) const
|
|
{
|
|
props_.matrix(1, &press, &temp, z_, &cell_, A_, 0);
|
|
// Rs/Bo is in the gas row and oil column of A_.
|
|
// 1/Bo is in the oil row and column.
|
|
// Recall also that it is stored in column-major order.
|
|
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
|
|
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
|
|
const int np = props_.numPhases();
|
|
return A_[np*opos + gpos] / A_[np*opos + opos];
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Class that implements "vaporized oil-gas ratio" (Rv)
|
|
* as function of depth and pressure as follows:
|
|
*
|
|
* 1. The Rv at the gas-oil contact is equal to the
|
|
* saturated Rv value, Rv_sat_contact.
|
|
*
|
|
* 2. The Rv elsewhere is equal to Rv_sat_contact, but
|
|
* constrained to the saturated value as given by the
|
|
* local pressure.
|
|
*
|
|
* This should yield Rv-values that are constant below the
|
|
* contact, and decreasing above the contact.
|
|
*/
|
|
class RvSatAtContact : public RsFunction {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] props property object
|
|
* \param[in] cell any cell in the pvt region
|
|
* \param[in] p_contact oil pressure at the contact
|
|
* \param[in] T_contact temperature at the contact
|
|
*/
|
|
RvSatAtContact(const BlackoilPropertiesInterface& props, const int cell, const double p_contact, const double T_contact)
|
|
: props_(props), cell_(cell)
|
|
{
|
|
auto pu = props_.phaseUsage();
|
|
std::fill(z_, z_ + BlackoilPhases::MaxNumPhases, 0.0);
|
|
z_[pu.phase_pos[BlackoilPhases::Vapour]] = 1.0;
|
|
z_[pu.phase_pos[BlackoilPhases::Liquid]] = 1e100;
|
|
rv_sat_contact_ = satRv(p_contact, T_contact);
|
|
}
|
|
|
|
/**
|
|
* Function call.
|
|
*
|
|
* \param[in] depth Depth at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] press Pressure at which to calculate RV
|
|
* value.
|
|
*
|
|
* \param[in] temp Temperature at which to calculate RV
|
|
* value.
|
|
*
|
|
* \return Dissolved oil-gas ratio (RV) at depth @c
|
|
* depth and pressure @c press.
|
|
*/
|
|
double
|
|
operator()(const double /*depth*/,
|
|
const double press,
|
|
const double temp,
|
|
const double sat_oil = 0.0) const
|
|
{
|
|
if (sat_oil > 0.0) {
|
|
return satRv(press, temp);
|
|
} else {
|
|
return std::min(satRv(press, temp), rv_sat_contact_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const BlackoilPropertiesInterface& props_;
|
|
const int cell_;
|
|
double z_[BlackoilPhases::MaxNumPhases];
|
|
double rv_sat_contact_;
|
|
mutable double A_[BlackoilPhases::MaxNumPhases * BlackoilPhases::MaxNumPhases];
|
|
|
|
double satRv(const double press, const double temp) const
|
|
{
|
|
props_.matrix(1, &press, &temp, z_, &cell_, A_, 0);
|
|
// Rv/Bg is in the oil row and gas column of A_.
|
|
// 1/Bg is in the gas row and column.
|
|
// Recall also that it is stored in column-major order.
|
|
const int opos = props_.phaseUsage().phase_pos[BlackoilPhases::Liquid];
|
|
const int gpos = props_.phaseUsage().phase_pos[BlackoilPhases::Vapour];
|
|
const int np = props_.numPhases();
|
|
return A_[np*gpos + opos] / A_[np*gpos + gpos];
|
|
}
|
|
};
|
|
|
|
} // namespace Miscibility
|
|
|
|
/**
|
|
* Aggregate information base of an equilibration region.
|
|
*
|
|
* Provides inquiry methods for retrieving depths of contacs
|
|
* and pressure values as well as a means of calculating fluid
|
|
* densities, dissolved gas-oil ratio and vapourised oil-gas
|
|
* ratios.
|
|
*
|
|
* \tparam DensCalc Type that provides access to a phase
|
|
* density calculation facility. Must implement an operator()
|
|
* declared as
|
|
* <CODE>
|
|
* std::vector<double>
|
|
* operator()(const double press,
|
|
* const std::vector<double>& svol )
|
|
* </CODE>
|
|
* that calculates the phase densities of all phases in @c
|
|
* svol at fluid pressure @c press.
|
|
*/
|
|
template <class DensCalc>
|
|
class EquilReg {
|
|
public:
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* \param[in] rec Equilibration data of current region.
|
|
* \param[in] density Density calculator of current region.
|
|
* \param[in] rs Calculator of dissolved gas-oil ratio.
|
|
* \param[in] rv Calculator of vapourised oil-gas ratio.
|
|
* \param[in] pu Summary of current active phases.
|
|
*/
|
|
EquilReg(const EquilRecord& rec,
|
|
const DensCalc& density,
|
|
std::shared_ptr<Miscibility::RsFunction> rs,
|
|
std::shared_ptr<Miscibility::RsFunction> rv,
|
|
const PhaseUsage& pu)
|
|
: rec_ (rec)
|
|
, density_(density)
|
|
, rs_ (rs)
|
|
, rv_ (rv)
|
|
, pu_ (pu)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Type of density calculator.
|
|
*/
|
|
typedef DensCalc CalcDensity;
|
|
|
|
/**
|
|
* Type of dissolved gas-oil ratio calculator.
|
|
*/
|
|
typedef Miscibility::RsFunction CalcDissolution;
|
|
|
|
/**
|
|
* Type of vapourised oil-gas ratio calculator.
|
|
*/
|
|
typedef Miscibility::RsFunction CalcEvaporation;
|
|
|
|
/**
|
|
* Datum depth in current region
|
|
*/
|
|
double datum() const { return this->rec_.datumDepth(); }
|
|
|
|
/**
|
|
* Pressure at datum depth in current region.
|
|
*/
|
|
double pressure() const { return this->rec_.datumDepthPressure(); }
|
|
|
|
/**
|
|
* Depth of water-oil contact.
|
|
*/
|
|
double zwoc() const { return this->rec_.waterOilContactDepth(); }
|
|
|
|
/**
|
|
* water-oil capillary pressure at water-oil contact.
|
|
*
|
|
* \return P_o - P_w at WOC.
|
|
*/
|
|
double pcow_woc() const { return this->rec_.waterOilContactCapillaryPressure(); }
|
|
|
|
/**
|
|
* Depth of gas-oil contact.
|
|
*/
|
|
double zgoc() const { return this->rec_.gasOilContactDepth(); }
|
|
|
|
/**
|
|
* Gas-oil capillary pressure at gas-oil contact.
|
|
*
|
|
* \return P_g - P_o at GOC.
|
|
*/
|
|
double pcgo_goc() const { return this->rec_.gasOilContactCapillaryPressure(); }
|
|
|
|
/**
|
|
* Retrieve phase density calculator of current region.
|
|
*/
|
|
const CalcDensity&
|
|
densityCalculator() const { return this->density_; }
|
|
|
|
/**
|
|
* Retrieve dissolved gas-oil ratio calculator of current
|
|
* region.
|
|
*/
|
|
const CalcDissolution&
|
|
dissolutionCalculator() const { return *this->rs_; }
|
|
|
|
/**
|
|
* Retrieve vapourised oil-gas ratio calculator of current
|
|
* region.
|
|
*/
|
|
const CalcEvaporation&
|
|
evaporationCalculator() const { return *this->rv_; }
|
|
|
|
/**
|
|
* Retrieve active fluid phase summary.
|
|
*/
|
|
const PhaseUsage&
|
|
phaseUsage() const { return this->pu_; }
|
|
|
|
private:
|
|
EquilRecord rec_; /**< Equilibration data */
|
|
DensCalc density_; /**< Density calculator */
|
|
std::shared_ptr<Miscibility::RsFunction> rs_; /**< RS calculator */
|
|
std::shared_ptr<Miscibility::RsFunction> rv_; /**< RV calculator */
|
|
PhaseUsage pu_; /**< Active phase summary */
|
|
};
|
|
|
|
|
|
|
|
/// Functor for inverting capillary pressure function.
|
|
/// Function represented is
|
|
/// f(s) = pc(s) - target_pc
|
|
struct PcEq
|
|
{
|
|
PcEq(const BlackoilPropertiesInterface& props,
|
|
const int phase,
|
|
const int cell,
|
|
const double target_pc)
|
|
: props_(props),
|
|
phase_(phase),
|
|
cell_(cell),
|
|
target_pc_(target_pc)
|
|
{
|
|
std::fill(s_, s_ + BlackoilPhases::MaxNumPhases, 0.0);
|
|
std::fill(pc_, pc_ + BlackoilPhases::MaxNumPhases, 0.0);
|
|
}
|
|
double operator()(double s) const
|
|
{
|
|
s_[phase_] = s;
|
|
props_.capPress(1, s_, &cell_, pc_, 0);
|
|
return pc_[phase_] - target_pc_;
|
|
}
|
|
private:
|
|
const BlackoilPropertiesInterface& props_;
|
|
const int phase_;
|
|
const int cell_;
|
|
const int target_pc_;
|
|
mutable double s_[BlackoilPhases::MaxNumPhases];
|
|
mutable double pc_[BlackoilPhases::MaxNumPhases];
|
|
};
|
|
|
|
|
|
|
|
/// Compute saturation of some phase corresponding to a given
|
|
/// capillary pressure.
|
|
inline double satFromPc(const BlackoilPropertiesInterface& props,
|
|
const int phase,
|
|
const int cell,
|
|
const double target_pc,
|
|
const bool increasing = false)
|
|
{
|
|
// Find minimum and maximum saturations.
|
|
double sminarr[BlackoilPhases::MaxNumPhases];
|
|
double smaxarr[BlackoilPhases::MaxNumPhases];
|
|
props.satRange(1, &cell, sminarr, smaxarr);
|
|
const double s0 = increasing ? smaxarr[phase] : sminarr[phase];
|
|
const double s1 = increasing ? sminarr[phase] : smaxarr[phase];
|
|
|
|
// Create the equation f(s) = pc(s) - target_pc
|
|
const PcEq f(props, phase, cell, target_pc);
|
|
const double f0 = f(s0);
|
|
const double f1 = f(s1);
|
|
|
|
if (f0 <= 0.0) {
|
|
return s0;
|
|
} else if (f1 > 0.0) {
|
|
return s1;
|
|
} else {
|
|
const int max_iter = 30;
|
|
const double tol = 1e-6;
|
|
int iter_used = -1;
|
|
typedef RegulaFalsi<ThrowOnError> ScalarSolver;
|
|
const double sol = ScalarSolver::solve(f, std::min(s0, s1), std::max(s0, s1), max_iter, tol, iter_used);
|
|
return sol;
|
|
}
|
|
}
|
|
|
|
|
|
/// Functor for inverting a sum of capillary pressure functions.
|
|
/// Function represented is
|
|
/// f(s) = pc1(s) + pc2(1 - s) - target_pc
|
|
struct PcEqSum
|
|
{
|
|
PcEqSum(const BlackoilPropertiesInterface& props,
|
|
const int phase1,
|
|
const int phase2,
|
|
const int cell,
|
|
const double target_pc)
|
|
: props_(props),
|
|
phase1_(phase1),
|
|
phase2_(phase2),
|
|
cell_(cell),
|
|
target_pc_(target_pc)
|
|
{
|
|
std::fill(s_, s_ + BlackoilPhases::MaxNumPhases, 0.0);
|
|
std::fill(pc_, pc_ + BlackoilPhases::MaxNumPhases, 0.0);
|
|
}
|
|
double operator()(double s) const
|
|
{
|
|
s_[phase1_] = s;
|
|
s_[phase2_] = 1.0 - s;
|
|
props_.capPress(1, s_, &cell_, pc_, 0);
|
|
return pc_[phase1_] + pc_[phase2_] - target_pc_;
|
|
}
|
|
private:
|
|
const BlackoilPropertiesInterface& props_;
|
|
const int phase1_;
|
|
const int phase2_;
|
|
const int cell_;
|
|
const int target_pc_;
|
|
mutable double s_[BlackoilPhases::MaxNumPhases];
|
|
mutable double pc_[BlackoilPhases::MaxNumPhases];
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Compute saturation of some phase corresponding to a given
|
|
/// capillary pressure, where the capillary pressure function
|
|
/// is given as a sum of two other functions.
|
|
inline double satFromSumOfPcs(const BlackoilPropertiesInterface& props,
|
|
const int phase1,
|
|
const int phase2,
|
|
const int cell,
|
|
const double target_pc)
|
|
{
|
|
// Find minimum and maximum saturations.
|
|
double sminarr[BlackoilPhases::MaxNumPhases];
|
|
double smaxarr[BlackoilPhases::MaxNumPhases];
|
|
props.satRange(1, &cell, sminarr, smaxarr);
|
|
const double smin = sminarr[phase1];
|
|
const double smax = smaxarr[phase1];
|
|
|
|
// Create the equation f(s) = pc1(s) + pc2(1-s) - target_pc
|
|
const PcEqSum f(props, phase1, phase2, cell, target_pc);
|
|
const double f0 = f(smin);
|
|
const double f1 = f(smax);
|
|
if (f0 <= 0.0) {
|
|
return smin;
|
|
} else if (f1 > 0.0) {
|
|
return smax;
|
|
} else {
|
|
const int max_iter = 30;
|
|
const double tol = 1e-6;
|
|
int iter_used = -1;
|
|
typedef RegulaFalsi<ThrowOnError> ScalarSolver;
|
|
const double sol = ScalarSolver::solve(f, smin, smax, max_iter, tol, iter_used);
|
|
return sol;
|
|
}
|
|
}
|
|
|
|
/// Compute saturation from depth. Used for constant capillary pressure function
|
|
inline double satFromDepth(const BlackoilPropertiesInterface& props,
|
|
const double cellDepth,
|
|
const double contactDepth,
|
|
const int phase,
|
|
const int cell,
|
|
const bool increasing = false)
|
|
{
|
|
// Find minimum and maximum saturations.
|
|
double sminarr[BlackoilPhases::MaxNumPhases];
|
|
double smaxarr[BlackoilPhases::MaxNumPhases];
|
|
props.satRange(1, &cell, sminarr, smaxarr);
|
|
const double s0 = increasing ? smaxarr[phase] : sminarr[phase];
|
|
const double s1 = increasing ? sminarr[phase] : smaxarr[phase];
|
|
|
|
if (cellDepth < contactDepth){
|
|
return s0;
|
|
} else {
|
|
return s1;
|
|
}
|
|
|
|
}
|
|
|
|
/// Return true if capillary pressure function is constant
|
|
inline bool isConstPc(const BlackoilPropertiesInterface& props,
|
|
const int phase,
|
|
const int cell)
|
|
{
|
|
// Find minimum and maximum saturations.
|
|
double sminarr[BlackoilPhases::MaxNumPhases];
|
|
double smaxarr[BlackoilPhases::MaxNumPhases];
|
|
props.satRange(1, &cell, sminarr, smaxarr);
|
|
|
|
// Create the equation f(s) = pc(s);
|
|
const PcEq f(props, phase, cell, 0);
|
|
const double f0 = f(sminarr[phase]);
|
|
const double f1 = f(smaxarr[phase]);
|
|
return std::abs(f0 - f1) < std::numeric_limits<double>::epsilon();
|
|
}
|
|
|
|
} // namespace Equil
|
|
} // namespace Opm
|
|
|
|
|
|
#endif // OPM_EQUILIBRATIONHELPERS_HEADER_INCLUDED
|