opm-simulators/tests/test_parallel_wbp_calculation.cpp
2024-05-22 10:51:12 +02:00

627 lines
21 KiB
C++

/*
Copyright 2023 Equinor.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE Parallel_WBPn_Calculation
#define BOOST_TEST_NO_MAIN
#include <boost/test/unit_test.hpp>
#include <opm/simulators/wells/ParallelWBPCalculation.hpp>
#include <opm/simulators/wells/ParallelPAvgDynamicSourceData.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/simulators/utils/ParallelCommunication.hpp>
#include <opm/grid/common/CommunicationUtils.hpp>
#include <opm/input/eclipse/EclipseState/Grid/GridDims.hpp>
#include <opm/input/eclipse/Schedule/Well/Connection.hpp>
#include <opm/input/eclipse/Schedule/Well/PAvg.hpp>
#include <opm/input/eclipse/Schedule/Well/PAvgDynamicSourceData.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/input/eclipse/Schedule/Well/WellConnections.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <dune/common/parallel/mpihelper.hh>
#include <algorithm>
#include <array>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <iostream>
#include <memory>
#include <numeric>
#include <string>
#include <string_view>
#include <vector>
namespace {
#if HAVE_MPI
struct MPIError
{
MPIError(std::string_view errstr, const int ec)
: errorstring { errstr }
, errorcode { ec }
{}
std::string errorstring;
int errorcode;
};
void MPI_err_handler(MPI_Comm*, int* err_code, ...)
{
std::array<char, MPI_MAX_ERROR_STRING> err_string_vec{'\0'};
auto err_length = 0;
MPI_Error_string(*err_code, err_string_vec.data(), &err_length);
auto err_string = std::string_view {
err_string_vec.data(),
static_cast<std::string_view::size_type>(err_length)
};
std::cerr << "An MPI Error ocurred:\n -> " << err_string << '\n';
throw MPIError { err_string, *err_code };
}
#endif // HAVE_MPI
double standardGravity()
{
return Opm::unit::gravity;
}
std::size_t globIndex(const std::array<int,3>& ijk,
const std::array<int,3>& dims)
{
return ijk[0] + dims[0]*(ijk[1] + static_cast<std::size_t>(dims[1])*ijk[2]);
}
std::array<int,3> cellIJK(int cell,
const std::array<int,3>& dims)
{
auto ijk = std::array<int,3>{};
ijk[0] = cell % dims[0]; cell /= dims[0];
ijk[1] = cell % dims[1];
ijk[2] = cell / dims[1];
return ijk;
}
namespace Rank {
namespace Top {
int globalToLocal(const std::size_t global)
{
return (global >= 5 * 5 * 5)
? -1
: static_cast<int>(global);
}
bool isInRange(const std::array<int,3>& ijk)
{
// Well block column in top half covers zero-based index
// range
//
// [ 1..3, 1..3, 2..4 ]
//
// of index range
//
// [ 0..4, 0..4 , 0..4 ]
return (ijk[0] >= 1) && (ijk[0] <= 3)
&& (ijk[1] >= 1) && (ijk[1] <= 3)
&& (ijk[2] >= 2) && (ijk[2] <= 4);
}
std::size_t fieldIx(const std::array<int,3>& ijk)
{
return globIndex({ ijk[0] - 1, ijk[1] - 1, ijk[2] - 2 }, {3, 3, 3});
}
double fieldValue(const int cell, std::initializer_list<double> field)
{
const auto ijk = cellIJK(cell, { 5, 5, 5 });
return isInRange(ijk) ? *(std::data(field) + fieldIx(ijk)) : 0.0;
}
// Octave: 1234 + fix(100 * rand([3, 3, 6])) -- top half
double pressure(const int cell)
{
return fieldValue(cell, {
// K=2
1.302000e+03, 1.308000e+03, 1.279000e+03,
1.242000e+03, 1.256000e+03, 1.325000e+03,
1.249000e+03, 1.316000e+03, 1.287000e+03,
// K=3
1.333000e+03, 1.241000e+03, 1.278000e+03,
1.244000e+03, 1.330000e+03, 1.234000e+03,
1.311000e+03, 1.315000e+03, 1.320000e+03,
// K=4
1.242000e+03, 1.273000e+03, 1.259000e+03,
1.314000e+03, 1.277000e+03, 1.325000e+03,
1.252000e+03, 1.260000e+03, 1.248000e+03,
});
}
// Octave: fix(1e6 * (123.4 + 56.7*rand([3, 3, 6]))) / 1e6 -- top half
double porevol(const int cell)
{
return fieldValue(cell, {
// K=2
1.301471680e+02, 1.516572410e+02, 1.778174820e+02,
1.426998700e+02, 1.565846810e+02, 1.360901360e+02,
1.659968420e+02, 1.378638930e+02, 1.520877640e+02,
// K=3
1.630376500e+02, 1.739142140e+02, 1.777918230e+02,
1.544271200e+02, 1.312600050e+02, 1.318649700e+02,
1.380007180e+02, 1.710686680e+02, 1.378177990e+02,
// K=4
1.695699490e+02, 1.372078650e+02, 1.760892470e+02,
1.432440790e+02, 1.345469500e+02, 1.376364540e+02,
1.583297330e+02, 1.502354770e+02, 1.433390940e+02,
});
}
// Octave: 0.1 + round(0.1 * rand([3, 3, 6]), 2) -- top half
double density(const int cell)
{
return fieldValue(cell, {
// K=2
0.120, 0.120, 0.120,
0.140, 0.130, 0.190,
0.140, 0.120, 0.190,
// K=3
0.200, 0.140, 0.110,
0.130, 0.140, 0.160,
0.130, 0.160, 0.170,
// K=4
0.120, 0.110, 0.130,
0.130, 0.140, 0.150,
0.110, 0.130, 0.180,
});
}
void cellSource(const int cell,
Opm::PAvgDynamicSourceData<double>::SourceDataSpan<double> src)
{
using Item = Opm::PAvgDynamicSourceData<double>::SourceDataSpan<double>::Item;
src .set(Item::Pressure , pressure(cell))
.set(Item::PoreVol , porevol (cell))
.set(Item::MixtureDensity, density (cell));
}
std::vector<int> localConnIdx()
{
auto localIdx = std::vector<int>(6, -1);
for (auto perf = 0; perf < 3; ++perf) {
localIdx[perf] = perf;
}
return localIdx;
}
Opm::ParallelWBPCalculation<double>::EvaluatorFactory connSource()
{
return []() {
auto rho = std::vector { 0.1, 0.12, 0.14, };
return [rho = std::move(rho)]
(const int connIx,
Opm::PAvgDynamicSourceData<double>::SourceDataSpan<double> src)
{
using Item = Opm::PAvgDynamicSourceData<double>::SourceDataSpan<double>::Item;
src .set(Item::Pressure , 1222.0)
.set(Item::PoreVol , 1.25)
.set(Item::MixtureDensity, rho[connIx]);
};
};
}
} // namespace Top
namespace Bottom {
int globalToLocal(const std::size_t global)
{
constexpr auto middle = 5 * 5 * 5;
return (global < middle)
? -1
: static_cast<int>(global - middle);
}
bool isInRange(const std::array<int,3>& ijk)
{
// Well block column in bottom half covers zero-based index
// range
//
// [ 1..3, 1..3, 0..2 ]
//
// of index range
//
// [ 0..4, 0..4 , 0..4 ]
return (ijk[0] >= 1) && (ijk[0] <= 3)
&& (ijk[1] >= 1) && (ijk[1] <= 3)
&& (ijk[2] >= 0) && (ijk[2] <= 2);
}
std::size_t fieldIx(const std::array<int,3>& ijk)
{
return globIndex({ ijk[0] - 1, ijk[1] - 1, ijk[2] }, {3, 3, 3});
}
double fieldValue(const int cell, std::initializer_list<double> field)
{
const auto ijk = cellIJK(cell, { 5, 5, 5 });
return isInRange(ijk) ? *(std::data(field) + fieldIx(ijk)) : 0.0;
}
// Octave: 1234 + fix(100 * rand([3, 3, 6])) -- bottom half
double pressure(const int cell)
{
return fieldValue(cell, {
// K=5
1.247000e+03, 1.320000e+03, 1.291000e+03,
1.288000e+03, 1.248000e+03, 1.319000e+03,
1.296000e+03, 1.269000e+03, 1.285000e+03,
// K=6
1.274000e+03, 1.241000e+03, 1.257000e+03,
1.246000e+03, 1.252000e+03, 1.257000e+03,
1.275000e+03, 1.238000e+03, 1.324000e+03,
// K=7
1.328000e+03, 1.283000e+03, 1.282000e+03,
1.267000e+03, 1.324000e+03, 1.270000e+03,
1.245000e+03, 1.312000e+03, 1.272000e+03,
});
}
// Octave: fix(1e6 * (123.4 + 56.7*rand([3, 3, 6]))) / 1e6 -- bottom half
double porevol(const int cell)
{
return fieldValue(cell, {
// K=5
1.705079830e+02, 1.565844730e+02, 1.545693280e+02,
1.754048800e+02, 1.396070720e+02, 1.663332520e+02,
1.661364390e+02, 1.449712790e+02, 1.555954870e+02,
// K=6
1.277009380e+02, 1.264589710e+02, 1.534962210e+02,
1.675787810e+02, 1.763584050e+02, 1.307656820e+02,
1.556523010e+02, 1.500144490e+02, 1.240748470e+02,
// K=7
1.425148530e+02, 1.325957360e+02, 1.684359330e+02,
1.410458920e+02, 1.533678280e+02, 1.327922820e+02,
1.575323760e+02, 1.383104710e+02, 1.604862840e+02,
});
}
// Octave: 0.1 + round(0.1 * rand([3, 3, 6]), 2) -- bottom half
double density(const int cell)
{
return fieldValue(cell, {
// K=5
0.100, 0.190, 0.170,
0.150, 0.160, 0.120,
0.150, 0.200, 0.150,
// K=6
0.150, 0.120, 0.150,
0.160, 0.170, 0.140,
0.140, 0.200, 0.100,
// K=7
0.190, 0.190, 0.180,
0.110, 0.130, 0.130,
0.170, 0.110, 0.170,
});
}
void cellSource(const int cell,
Opm::PAvgDynamicSourceData<double>::SourceDataSpan<double> src)
{
using Item = Opm::PAvgDynamicSourceData<double>::SourceDataSpan<double>::Item;
src .set(Item::Pressure , pressure(cell))
.set(Item::PoreVol , porevol (cell))
.set(Item::MixtureDensity, density (cell));
}
std::vector<int> localConnIdx()
{
auto localIdx = std::vector<int>(6, -1);
for (auto perf = 0; perf < 3; ++perf) {
localIdx[3 + perf] = perf;
}
return localIdx;
}
Opm::ParallelWBPCalculation<double>::EvaluatorFactory connSource()
{
return []() {
auto rho = std::vector { 0.16, 0.18, 0.2, };
return [rho = std::move(rho)]
(const int connIx,
Opm::PAvgDynamicSourceData<double>::SourceDataSpan<double> src)
{
using Item = Opm::PAvgDynamicSourceData<double>::SourceDataSpan<double>::Item;
src .set(Item::Pressure , 1222.0)
.set(Item::PoreVol , 1.25)
.set(Item::MixtureDensity, rho[connIx]);
};
};
}
} // namespace Bottom
} // namespace Rank
std::shared_ptr<Opm::WellConnections>
centreConnections(const int topConn, const int numConns)
{
auto conns = std::vector<Opm::Connection>{};
const auto dims = std::array { 5, 5, 10 };
const auto i = 2;
const auto j = 2;
const auto kMax = std::min(dims[2] - 1, topConn + numConns);
const auto state = std::array {
Opm::Connection::State::OPEN,
Opm::Connection::State::SHUT,
Opm::Connection::State::OPEN,
};
for (auto k = topConn; k < kMax; ++k) {
const auto depth = 2000 + (2*k + 1) / static_cast<double>(2);
auto ctf_props = Opm::Connection::CTFProperties{};
// 0.03, 0.0, 0.01, 0.02, 0.03, ...
ctf_props.CF = ((k + 3 - topConn) % 4) / 100.0;
ctf_props.Kh = 1.0;
ctf_props.Ke = 1.0;
ctf_props.rw = 1.0;
ctf_props.r0 = 0.5;
ctf_props.re = 0.5;
ctf_props.connection_length = 1.0;
conns.emplace_back(i, j, k, globIndex({i, j, k}, dims), k - topConn,
// Open, Shut, Open, Open, Shut, ...
state[(k - topConn) % state.size()],
Opm::Connection::Direction::Z,
Opm::Connection::CTFKind::DeckValue,
0, depth, ctf_props, k - topConn, false);
}
return std::make_shared<Opm::WellConnections>
(Opm::Connection::Order::INPUT, i, j, conns);
}
Opm::Well producerWell()
{
auto w = Opm::Well {
"P", "G", 0, 0, 2, 2, 2000.5,
Opm::WellType { true, Opm::Phase::OIL }, // Oil producer
Opm::Well::ProducerCMode::ORAT,
Opm::Connection::Order::INPUT,
Opm::UnitSystem::newMETRIC(),
-3.0e+20, // UDQ undefined
0.0, true, true, 0,
Opm::Well::GasInflowEquation::STD
};
w.updateConnections(centreConnections(2, 6), true);
return w;
}
Opm::ParallelWellInfo<double>
parallelWellInfo(const Opm::Parallel::Communication& comm)
{
auto pwi = Opm::ParallelWellInfo<double> {
std::pair { std::string{ "P" }, true }, comm
};
pwi.beginReset();
const auto numLocalPerf = 3;
const auto perfOffset = comm.rank() * numLocalPerf;
auto prev = Opm::ParallelWellInfo<double>::INVALID_ECL_INDEX;
for (auto perf = 0; perf < numLocalPerf; ++perf) {
const auto curr = perfOffset + perf;
pwi.pushBackEclIndex(prev, curr);
prev = curr;
}
pwi.endReset();
pwi.communicateFirstPerforation(comm.rank() == 0);
return pwi;
}
void setCallbacksTop(Opm::ParallelWBPCalculation<double>& wbpCalcService)
{
wbpCalcService
.localCellIndex(&Rank::Top::globalToLocal)
.evalCellSource(&Rank::Top::cellSource);
}
void setCallbacksBottom(Opm::ParallelWBPCalculation<double>& wbpCalcService)
{
wbpCalcService
.localCellIndex(&Rank::Bottom::globalToLocal)
.evalCellSource(&Rank::Bottom::cellSource);
}
void setCallbacks(const int rank,
Opm::ParallelWBPCalculation<double>& wbpCalcService)
{
if (rank == 0) {
setCallbacksTop(wbpCalcService);
}
else {
setCallbacksBottom(wbpCalcService);
}
}
Opm::ParallelWBPCalculation<double>::EvaluatorFactory connSource(const int rank)
{
if (rank == 0) {
return Rank::Top::connSource();
}
else {
return Rank::Bottom::connSource();
}
}
std::vector<int> localConnIdx(const int rank)
{
if (rank == 0) {
return Rank::Top::localConnIdx();
}
else {
return Rank::Bottom::localConnIdx();
}
}
bool init_unit_test_func()
{
return true;
}
struct Setup
{
Setup()
: comm { Dune::MPIHelper::getCommunicator() }
, cellIndexMap { 5, 5, 10 }
, wbpCalcService { cellIndexMap, comm }
, pwi { parallelWellInfo(comm) }
{
setCallbacks(this->comm.rank(), this->wbpCalcService);
this->wbpCalcService
.createCalculator(producerWell(), this->pwi,
localConnIdx(this->comm.rank()),
connSource(this->comm.rank()));
}
Opm::Parallel::Communication comm;
Opm::GridDims cellIndexMap;
Opm::ParallelWBPCalculation<double> wbpCalcService;
Opm::ParallelWellInfo<double> pwi;
};
} // Anonymous namespace
BOOST_AUTO_TEST_CASE(Create)
{
auto comm = Opm::Parallel::Communication {
Dune::MPIHelper::getCommunicator()
};
BOOST_REQUIRE_EQUAL(comm.size(), 2);
const Opm::GridDims dims{5, 5, 10};
auto wbpCalcService = Opm::ParallelWBPCalculation<double> {
dims, comm
};
setCallbacks(comm.rank(), wbpCalcService);
const auto pwi = parallelWellInfo(comm);
const auto calcIdx = wbpCalcService
.createCalculator(producerWell(), pwi,
localConnIdx(comm.rank()),
connSource(comm.rank()));
BOOST_CHECK_EQUAL(calcIdx, std::size_t{0});
}
BOOST_AUTO_TEST_CASE(TopOfFormation_Well_OpenConns)
{
// Producer connected in Z direction in cells (3,3,3), (3,3,4), (3,3,5),
// (3,3,6), (3,3,7), and (3,3,8). Connections (3,3,4) and (3,3,7) are
// shut.
Setup cse {};
cse.wbpCalcService.defineCommunication();
cse.wbpCalcService.collectDynamicValues();
const auto calcIndex = std::size_t{0};
const auto controls = Opm::PAvg{};
const auto gravity = standardGravity();
const auto refDepth = 2002.5; // BHP reference depth. Depth correction in layers 4..8.
cse.wbpCalcService.inferBlockAveragePressures(calcIndex, controls, gravity, refDepth);
const auto avgPress = cse.wbpCalcService.averagePressures(calcIndex);
using WBPMode = Opm::PAvgCalculator<double>::Result::WBPMode;
BOOST_CHECK_CLOSE(avgPress.value(WBPMode::WBP) , 1254.806625666667, 1.0e-8);
BOOST_CHECK_CLOSE(avgPress.value(WBPMode::WBP4), 1295.348292333333, 1.0e-8);
BOOST_CHECK_CLOSE(avgPress.value(WBPMode::WBP5), 1275.077459000000, 1.0e-8);
BOOST_CHECK_CLOSE(avgPress.value(WBPMode::WBP9), 1269.379542333333, 1.0e-8);
}
int main(int argc, char** argv)
{
Dune::MPIHelper::instance(argc, argv);
#if HAVE_MPI
// Register a throwing error handler to allow for debugging with
//
// catch throw
//
// in GDB.
MPI_Errhandler handler{};
MPI_Comm_create_errhandler(MPI_err_handler, &handler);
MPI_Comm_set_errhandler(MPI_COMM_WORLD, handler);
#endif // HAVE_MPI
return boost::unit_test::unit_test_main(&init_unit_test_func, argc, argv);
}