opm-simulators/ebos/eclequilinitializer.hh
Andreas Lauser 7a7d6d868d ebos: fix the interactions between SWATINIT and threshold pressures
hopefully this makes standalone `ebos` arrive at the same initial
condition as `flow_ebos` if both, SWATINIT and threshold pressures are
enabled. we need to calculate the initial condition twice either
threshold pressures and SWATINIT are enabled. (`ebos` and `flow_ebos`
diverged after OPM/opm-core#1129.)

the proposed patch is a kludge IMO, but in the light that in my
opinion, SWATINIT and threshold pressures are both physically not
justified and given the fact that SWATINIT must not be considered for
the threshold pressues should be considered to be a bug of the
reference simulator, I think the patch is okay.
2017-01-18 16:46:53 +01:00

289 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \copydoc Ewoms::EclEquilInitializer
*/
#ifndef EWOMS_ECL_EQUIL_INITIALIZER_HH
#define EWOMS_ECL_EQUIL_INITIALIZER_HH
#include <ewoms/common/propertysystem.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
// the ordering of these includes matters. do not touch it if you're not prepared to deal
// with some trouble!
#include <dune/grid/cpgrid/GridHelpers.hpp>
#include <opm/core/props/BlackoilPropertiesFromDeck.hpp>
#include <opm/core/simulator/initStateEquil.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <vector>
namespace Ewoms {
namespace Properties {
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(FluidSystem);
NEW_PROP_TAG(GridView);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(MaterialLaw);
NEW_PROP_TAG(EnableSwatinit);
}
/*!
* \ingroup EclBlackOilSimulator
*
* \brief Computes the initial condition based on the EQUIL keyword from ECL.
*
* So far, it uses the "initStateEquil()" function from opm-core. Since this method is
* very much glued into the opm-core data structures, it should be reimplemented in the
* medium to long term for some significant memory savings and less significant
* performance improvements.
*/
template <class TypeTag>
class EclEquilInitializer
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef Opm::CompositionalFluidState<Scalar, FluidSystem> ScalarFluidState;
enum { numPhases = FluidSystem::numPhases };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { numComponents = FluidSystem::numComponents };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
enum { dimWorld = GridView::dimensionworld };
public:
template <class EclMaterialLawManager>
EclEquilInitializer(const Simulator& simulator,
EclMaterialLawManager& materialLawManager,
bool enableSwatinit)
: simulator_(simulator)
{
const auto& gridManager = simulator.gridManager();
const auto& deck = gridManager.deck();
const auto& eclState = gridManager.eclState();
const auto& equilGrid = gridManager.equilGrid();
unsigned numElems = gridManager.grid().size(0);
unsigned numEquilElems = gridManager.equilGrid().size(0);
unsigned numCartesianElems = gridManager.cartesianSize();
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::ThreePhaseMaterialTraits<double,
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx> EquilTraits;
// create a separate instance of the material law manager just because opm-core
// only supports double as the type for scalars (but ebos may use float or quad)
std::vector<int> compressedToCartesianEquilElemIdx(numEquilElems);
std::vector<int> equilCartesianToCompressed( gridManager.equilCartesianSize(), -1 );
for (unsigned equilElemIdx = 0; equilElemIdx < numEquilElems; ++equilElemIdx)
{
unsigned int equilCartesianIdx = gridManager.equilCartesianIndex(equilElemIdx);
compressedToCartesianEquilElemIdx[equilElemIdx] = equilCartesianIdx;
equilCartesianToCompressed[ equilCartesianIdx ] = equilElemIdx;
}
auto equilMaterialLawManager =
std::make_shared<Opm::EclMaterialLawManager<EquilTraits> >();
equilMaterialLawManager->initFromDeck(deck, eclState, compressedToCartesianEquilElemIdx);
// create the data structures which are used by initStateEquil()
Opm::parameter::ParameterGroup tmpParam;
Opm::BlackoilPropertiesFromDeck opmBlackoilProps(
gridManager.deck(),
gridManager.eclState(),
equilMaterialLawManager,
Opm::UgGridHelpers::numCells(equilGrid),
Opm::UgGridHelpers::globalCell(equilGrid),
Opm::UgGridHelpers::cartDims(equilGrid),
tmpParam);
// initialize the boiler plate of opm-core the state structure.
const auto opmPhaseUsage = opmBlackoilProps.phaseUsage();
Opm::BlackoilState opmBlackoilState(numEquilElems,
/*numFaces=*/0, // we don't care here
opmPhaseUsage.num_phases);
// do the actual computation.
Opm::initStateEquil(equilGrid,
opmBlackoilProps,
gridManager.deck(),
gridManager.eclState(),
simulator.problem().gravity()[dimWorld - 1],
opmBlackoilState,
enableSwatinit);
std::vector<int> localToEquilIndex( numElems, -1 );
for( unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx )
{
const int cartesianIndex = gridManager.cartesianIndex( elemIdx );
assert( equilCartesianToCompressed[ cartesianIndex ] >= 0 );
localToEquilIndex[ elemIdx ] = equilCartesianToCompressed[ cartesianIndex ];
}
// copy the result into the array of initial fluid states
initialFluidStates_.resize(numCartesianElems);
for (unsigned int elemIdx = 0; elemIdx < numElems; ++elemIdx) {
unsigned cartesianElemIdx = gridManager.cartesianIndex(elemIdx);
auto& fluidState = initialFluidStates_[cartesianElemIdx];
const unsigned int equilElemIdx = localToEquilIndex[ elemIdx ];
// get the PVT region index of the current element
unsigned regionIdx = simulator_.problem().pvtRegionIndex(elemIdx);
// set the phase saturations
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar S;
if (!FluidSystem::phaseIsActive(phaseIdx))
S = 0.0;
else {
unsigned opmPhasePos = 10000;
switch (phaseIdx) {
case oilPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Liquid];
break;
case gasPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Vapour];
break;
case waterPhaseIdx:
opmPhasePos = opmPhaseUsage.phase_pos[Opm::BlackoilPhases::Aqua];
break;
}
S = opmBlackoilState.saturation()[equilElemIdx*opmPhaseUsage.num_phases
+ opmPhasePos];
}
fluidState.setSaturation(phaseIdx, S);
}
// set the temperature
const auto& temperatureVector = opmBlackoilState.temperature();
Scalar T = FluidSystem::surfaceTemperature;
if (!temperatureVector.empty())
T = temperatureVector[equilElemIdx];
fluidState.setTemperature(T);
// set the phase pressures. the Opm::BlackoilState only provides the oil
// phase pressure, so we need to calculate the other phases' pressures
// ourselfs.
Dune::FieldVector< Scalar, numPhases > pC( 0 );
const auto& matParams = simulator.problem().materialLawParams(elemIdx);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
Scalar po = opmBlackoilState.pressure()[equilElemIdx];
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
fluidState.setPressure(phaseIdx, po + (pC[phaseIdx] - pC[oilPhaseIdx]));
// reset the phase compositions
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
fluidState.setMoleFraction(phaseIdx, compIdx, 0.0);
// the composition of the water phase is simple: it only consists of the
// water component.
fluidState.setMoleFraction(waterPhaseIdx, waterCompIdx, 1.0);
if (FluidSystem::enableDissolvedGas()) {
// for gas and oil we have to translate surface volumes to mole fractions
// before we can set the composition in the fluid state
Scalar Rs = opmBlackoilState.gasoilratio()[equilElemIdx];
Scalar RsSat = FluidSystem::saturatedDissolutionFactor(fluidState, oilPhaseIdx, regionIdx);
if (Rs > RsSat)
Rs = RsSat;
// convert the Rs factor to mole fraction dissolved gas in oil
Scalar XoG = FluidSystem::convertRsToXoG(Rs, regionIdx);
Scalar xoG = FluidSystem::convertXoGToxoG(XoG, regionIdx);
fluidState.setMoleFraction(oilPhaseIdx, oilCompIdx, 1 - xoG);
fluidState.setMoleFraction(oilPhaseIdx, gasCompIdx, xoG);
}
// retrieve the surface volume of vaporized gas
if (FluidSystem::enableVaporizedOil()) {
Scalar Rv = opmBlackoilState.rv()[equilElemIdx];
Scalar RvSat = FluidSystem::saturatedDissolutionFactor(fluidState, gasPhaseIdx, regionIdx);
if (Rv > RvSat)
Rv = RvSat;
// convert the Rs factor to mole fraction dissolved gas in oil
Scalar XgO = FluidSystem::convertRvToXgO(Rv, regionIdx);
Scalar xgO = FluidSystem::convertXgOToxgO(XgO, regionIdx);
fluidState.setMoleFraction(gasPhaseIdx, oilCompIdx, xgO);
fluidState.setMoleFraction(gasPhaseIdx, gasCompIdx, 1 - xgO);
}
// deal with the changed pressure scaling due to SWATINIT if SWATINIT is
// requested to be applied. this is quite hacky but hey it works!
if (enableSwatinit) {
const auto& equilScalingPoints =
equilMaterialLawManager->oilWaterScaledEpsPointsDrainage(equilElemIdx);
auto& scalingPoints =
materialLawManager.oilWaterScaledEpsPointsDrainage(elemIdx);
scalingPoints.setMaxPcnw(equilScalingPoints.maxPcnw());
}
}
}
/*!
* \brief Return the initial thermodynamic state which should be used as the initial
* condition.
*
* This is supposed to correspond to hydrostatic conditions.
*/
const ScalarFluidState& initialFluidState(unsigned elemIdx) const
{
const auto& gridManager = simulator_.gridManager();
unsigned cartesianElemIdx = gridManager.cartesianIndex(elemIdx);
return initialFluidStates_[cartesianElemIdx];
}
protected:
const Simulator& simulator_;
std::vector<ScalarFluidState> initialFluidStates_;
};
} // namespace Ewoms
#endif