opm-simulators/opm/simulators/wells/WellInterfaceGeneric.hpp

256 lines
8.3 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2017 IRIS
Copyright 2019 Norce
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLINTERFACE_GENERIC_HEADER_INCLUDED
#define OPM_WELLINTERFACE_GENERIC_HEADER_INCLUDED
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
#include <map>
#include <optional>
#include <string>
#include <vector>
namespace Opm
{
class DeferredLogger;
class GuideRate;
class ParallelWellInfo;
struct PerforationData;
struct PhaseUsage;
class SummaryState;
class VFPProperties;
class WellTestState;
class WellStateFullyImplicitBlackoil;
class WellInterfaceGeneric {
public:
using WellState = WellStateFullyImplicitBlackoil;
WellInterfaceGeneric(const Well& well,
const ParallelWellInfo& parallel_well_info,
const int time_step,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const int first_perf_index,
const std::vector<PerforationData>& perf_data);
/// Well name.
const std::string& name() const;
/// True if the well is an injector.
bool isInjector() const;
/// True if the well is a producer.
bool isProducer() const;
/// Well cells.
const std::vector<int>& cells() const { return well_cells_; }
/// Index of well in the wells struct and wellState
int indexOfWell() const;
const Well& wellEcl() const;
const PhaseUsage& phaseUsage() const;
/// Returns true if the well is currently in prediction mode (i.e. not history mode).
bool underPredictionMode() const;
// whether the well is operable
bool isOperable() const;
void initCompletions();
void closeCompletions(WellTestState& wellTestState);
void setVFPProperties(const VFPProperties* vfp_properties_arg);
void setGuideRate(const GuideRate* guide_rate_arg);
void setWellEfficiencyFactor(const double efficiency_factor);
void setRepRadiusPerfLength(const std::vector<int>& cartesian_to_compressed);
void setWsolvent(const double wsolvent);
void setDynamicThpLimit(const double thp_limit);
void updatePerforatedCell(std::vector<bool>& is_cell_perforated);
/// Returns true if the well has one or more THP limits/constraints.
bool wellHasTHPConstraints(const SummaryState& summaryState) const;
void stopWell() {
this->wellStatus_ = Well::Status::STOP;
}
void openWell() {
this->wellStatus_ = Well::Status::OPEN;
}
bool wellIsStopped() const {
return this->wellStatus_ == Well::Status::STOP;
}
protected:
// whether a well is specified with a non-zero and valid VFP table number
bool isVFPActive(DeferredLogger& deferred_logger) const;
bool getAllowCrossFlow() const;
double wsolvent() const;
double mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const;
double getTHPConstraint(const SummaryState& summaryState) const;
void updateWellTestStatePhysical(const WellState& well_state,
const double simulation_time,
const bool write_message_to_opmlog,
WellTestState& well_test_state,
DeferredLogger& deferred_logger) const;
double getALQ(const WellState& well_state) const;
// definition of the struct OperabilityStatus
struct OperabilityStatus {
bool isOperable() const {
if (!operable_under_only_bhp_limit) {
return false;
} else {
return ( (isOperableUnderBHPLimit() || isOperableUnderTHPLimit()) );
}
}
bool isOperableUnderBHPLimit() const {
return operable_under_only_bhp_limit && obey_thp_limit_under_bhp_limit;
}
bool isOperableUnderTHPLimit() const {
return can_obtain_bhp_with_thp_limit && obey_bhp_limit_with_thp_limit;
}
void reset() {
operable_under_only_bhp_limit = true;
obey_thp_limit_under_bhp_limit = true;
can_obtain_bhp_with_thp_limit = true;
obey_bhp_limit_with_thp_limit = true;
}
// whether the well can be operated under bhp limit
// without considering other limits.
// if it is false, then the well is not operable for sure.
bool operable_under_only_bhp_limit = true;
// if the well can be operated under bhp limit, will it obey(not violate)
// the thp limit when operated under bhp limit
bool obey_thp_limit_under_bhp_limit = true;
// whether the well operate under the thp limit only
bool can_obtain_bhp_with_thp_limit = true;
// whether the well obey bhp limit when operated under thp limit
bool obey_bhp_limit_with_thp_limit = true;
};
OperabilityStatus operability_status_;
Well well_ecl_;
const ParallelWellInfo& parallel_well_info_;
const int current_step_;
// The pvt region of the well. We assume
// We assume a well to not penetrate more than one pvt region.
const int pvtRegionIdx_;
const int num_components_;
// number of phases
int number_of_phases_;
// the index of well in Wells struct
int index_of_well_;
// record the index of the first perforation
// of states of individual well.
int first_perf_;
const std::vector<PerforationData>* perf_data_;
// the vectors used to describe the inflow performance relationship (IPR)
// Q = IPR_A - BHP * IPR_B
// TODO: it minght need to go to WellInterface, let us implement it in StandardWell first
// it is only updated and used for producers for now
mutable std::vector<double> ipr_a_;
mutable std::vector<double> ipr_b_;
// cell index for each well perforation
std::vector<int> well_cells_;
// well index for each perforation
std::vector<double> well_index_;
// number of the perforations for this well
int number_of_perforations_;
// depth for each perforation
std::vector<double> perf_depth_;
// representative radius of the perforations, used in shear calculation
std::vector<double> perf_rep_radius_;
// length of the perforations, use in shear calculation
std::vector<double> perf_length_;
// well bore diameter
std::vector<double> bore_diameters_;
/*
* completions_ contains the mapping from completion id to connection indices
* {
* 2 : [ConnectionIndex, ConnectionIndex],
* 1 : [ConnectionIndex, ConnectionIndex, ConnectionIndex],
* 5 : [ConnectionIndex],
* 7 : [ConnectionIndex]
* ...
* }
* The integer IDs correspond to the COMPLETION id given by the COMPLUMP keyword.
* When there is no COMPLUMP keyword used, a default completion number will be assigned
* based on the order of the declaration of the connections.
* Since the connections not OPEN is not included in the Wells, so they will not be considered
* in this mapping relation.
*/
std::map<int, std::vector<int>> completions_;
// reference depth for the BHP
double ref_depth_;
// saturation table nubmer for each well perforation
std::vector<int> saturation_table_number_;
Well::Status wellStatus_;
const PhaseUsage* phase_usage_;
double gravity_;
double wsolvent_;
std::optional<double> dynamic_thp_limit_;
double well_efficiency_factor_;
const VFPProperties* vfp_properties_;
const GuideRate* guide_rate_;
};
}
#endif // OPM_WELLINTERFACE_HEADER_INCLUDED