mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 09:51:57 -06:00
2272 lines
88 KiB
C++
2272 lines
88 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2018 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/ScheduleTypes.hpp>
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
#include <opm/simulators/wells/TargetCalculator.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
template<typename TypeTag>
|
|
WellInterface<TypeTag>::
|
|
WellInterface(const Well& well,
|
|
const int time_step,
|
|
const ModelParameters& param,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components,
|
|
const int num_phases,
|
|
const int index_of_well,
|
|
const int first_perf_index,
|
|
const std::vector<PerforationData>& perf_data)
|
|
: well_ecl_(well)
|
|
, current_step_(time_step)
|
|
, param_(param)
|
|
, rateConverter_(rate_converter)
|
|
, pvtRegionIdx_(pvtRegionIdx)
|
|
, num_components_(num_components)
|
|
, number_of_phases_(num_phases)
|
|
, index_of_well_(index_of_well)
|
|
, first_perf_(first_perf_index)
|
|
{
|
|
if (time_step < 0) {
|
|
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
|
|
}
|
|
|
|
ref_depth_ = well.getRefDepth();
|
|
|
|
// We do not want to count SHUT perforations here, so
|
|
// it would be wrong to use wells.getConnections().size().
|
|
number_of_perforations_ = perf_data.size();
|
|
|
|
// perforations related
|
|
{
|
|
well_cells_.resize(number_of_perforations_);
|
|
well_index_.resize(number_of_perforations_);
|
|
saturation_table_number_.resize(number_of_perforations_);
|
|
int perf = 0;
|
|
for (const auto& pd : perf_data) {
|
|
well_cells_[perf] = pd.cell_index;
|
|
well_index_[perf] = pd.connection_transmissibility_factor;
|
|
saturation_table_number_[perf] = pd.satnum_id;
|
|
++perf;
|
|
}
|
|
|
|
int all_perf = 0;
|
|
originalConnectionIndex_.reserve(perf_data.size());
|
|
for (const auto connection : well.getConnections()) {
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
originalConnectionIndex_.push_back(all_perf);
|
|
}
|
|
++all_perf;
|
|
}
|
|
assert(originalConnectionIndex_.size() == perf_data.size());
|
|
}
|
|
|
|
// initialization of the completions mapping
|
|
initCompletions();
|
|
|
|
well_efficiency_factor_ = 1.0;
|
|
|
|
connectionRates_.resize(number_of_perforations_);
|
|
|
|
well_productivity_index_logger_counter_ = 0;
|
|
|
|
wellIsStopped_ = false;
|
|
if (well.getStatus() == Well::Status::STOP) {
|
|
wellIsStopped_ = true;
|
|
}
|
|
|
|
wsolvent_ = 0.0;
|
|
|
|
if (has_solvent && well.isInjector()) {
|
|
auto injectorType = well_ecl_.injectorType();
|
|
if (injectorType == InjectorType::GAS) {
|
|
wsolvent_ = well_ecl_.getSolventFraction();
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updatePerforatedCell(std::vector<bool>& is_cell_perforated)
|
|
{
|
|
|
|
for (int perf_idx = 0; perf_idx<number_of_perforations_; ++perf_idx) {
|
|
is_cell_perforated[well_cells_[perf_idx]] = true;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<double>& /* depth_arg */,
|
|
const double gravity_arg,
|
|
const int /* num_cells */)
|
|
{
|
|
phase_usage_ = phase_usage_arg;
|
|
gravity_ = gravity_arg;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
initCompletions()
|
|
{
|
|
assert(completions_.empty() );
|
|
|
|
const WellConnections& connections = well_ecl_.getConnections();
|
|
const int num_conns = connections.size();
|
|
|
|
int num_active_connections = 0;
|
|
for (int c = 0; c < num_conns; ++c) {
|
|
if (connections[c].state() == Connection::State::OPEN) {
|
|
completions_[connections[c].complnum()].push_back(num_active_connections++);
|
|
}
|
|
}
|
|
assert(num_active_connections == number_of_perforations_);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
setVFPProperties(const VFPProperties<VFPInjProperties,VFPProdProperties>* vfp_properties_arg)
|
|
{
|
|
vfp_properties_ = vfp_properties_arg;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
setGuideRate(const GuideRate* guide_rate_arg)
|
|
{
|
|
guide_rate_ = guide_rate_arg;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::string&
|
|
WellInterface<TypeTag>::
|
|
name() const
|
|
{
|
|
return well_ecl_.name();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
isInjector() const
|
|
{
|
|
return well_ecl_.isInjector();
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
isProducer() const
|
|
{
|
|
return well_ecl_.isProducer();
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
WellInterface<TypeTag>::
|
|
indexOfWell() const
|
|
{
|
|
return index_of_well_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
getAllowCrossFlow() const
|
|
{
|
|
return well_ecl_.getAllowCrossFlow();
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
setWellEfficiencyFactor(const double efficiency_factor)
|
|
{
|
|
well_efficiency_factor_ = efficiency_factor;
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const Well&
|
|
WellInterface<TypeTag>::
|
|
wellEcl() const
|
|
{
|
|
return well_ecl_;
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const PhaseUsage&
|
|
WellInterface<TypeTag>::
|
|
phaseUsage() const
|
|
{
|
|
assert(phase_usage_);
|
|
|
|
return *phase_usage_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
WellInterface<TypeTag>::
|
|
flowPhaseToEbosCompIdx( const int phaseIdx ) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
|
|
return Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
|
|
return Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
|
|
return Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
|
|
// for other phases return the index
|
|
return phaseIdx;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
WellInterface<TypeTag>::
|
|
ebosCompIdxToFlowCompIdx( const unsigned compIdx ) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == compIdx)
|
|
return pu.phase_pos[Water];
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == compIdx)
|
|
return pu.phase_pos[Oil];
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == compIdx)
|
|
return pu.phase_pos[Gas];
|
|
|
|
// for other phases return the index
|
|
return compIdx;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
wsolvent() const
|
|
{
|
|
return wsolvent_;
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
setWsolvent(const double wsolvent)
|
|
{
|
|
wsolvent_ = wsolvent;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
wpolymer() const
|
|
{
|
|
if (!has_polymer) {
|
|
return 0.0;
|
|
}
|
|
|
|
auto injectorType = well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::WATER) {
|
|
WellPolymerProperties polymer = well_ecl_.getPolymerProperties();
|
|
const double polymer_injection_concentration = polymer.m_polymerConcentration;
|
|
return polymer_injection_concentration;
|
|
} else {
|
|
// Not a water injection well => no polymer.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
wfoam() const
|
|
{
|
|
if (!has_foam) {
|
|
return 0.0;
|
|
}
|
|
|
|
auto injectorType = well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::GAS) {
|
|
WellFoamProperties fprop = well_ecl_.getFoamProperties();
|
|
return fprop.m_foamConcentration;
|
|
} else {
|
|
// Not a gas injection well => no foam.
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
wsalt() const
|
|
{
|
|
if (!has_brine) {
|
|
return 0.0;
|
|
}
|
|
|
|
auto injectorType = well_ecl_.injectorType();
|
|
|
|
if (injectorType == InjectorType::WATER) {
|
|
WellBrineProperties fprop = well_ecl_.getBrineProperties();
|
|
return fprop.m_saltConcentration;
|
|
} else {
|
|
// Not a water injection well => no salt (?).
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
wellHasTHPConstraints(const SummaryState& summaryState) const
|
|
{
|
|
if (well_ecl_.isInjector()) {
|
|
const auto controls = well_ecl_.injectionControls(summaryState);
|
|
if (controls.hasControl(Well::InjectorCMode::THP))
|
|
return true;
|
|
}
|
|
|
|
if (well_ecl_.isProducer( )) {
|
|
const auto controls = well_ecl_.productionControls(summaryState);
|
|
if (controls.hasControl(Well::ProducerCMode::THP))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
mostStrictBhpFromBhpLimits(const SummaryState& summaryState) const
|
|
{
|
|
if (well_ecl_.isInjector()) {
|
|
const auto& controls = well_ecl_.injectionControls(summaryState);
|
|
return controls.bhp_limit;
|
|
}
|
|
|
|
if (well_ecl_.isProducer( )) {
|
|
const auto& controls = well_ecl_.productionControls(summaryState);
|
|
return controls.bhp_limit;
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::
|
|
getTHPConstraint(const SummaryState& summaryState) const
|
|
{
|
|
if (well_ecl_.isInjector()) {
|
|
const auto& controls = well_ecl_.injectionControls(summaryState);
|
|
return controls.thp_limit;
|
|
}
|
|
|
|
if (well_ecl_.isProducer( )) {
|
|
const auto& controls = well_ecl_.productionControls(summaryState);
|
|
return controls.thp_limit;
|
|
}
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
updateWellControl(const Simulator& ebos_simulator,
|
|
const IndividualOrGroup iog,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger) /* const */
|
|
{
|
|
if (this->wellIsStopped()) {
|
|
return false;
|
|
}
|
|
|
|
const auto& summaryState = ebos_simulator.vanguard().summaryState();
|
|
const auto& schedule = ebos_simulator.vanguard().schedule();
|
|
const auto& well = well_ecl_;
|
|
std::string from;
|
|
if (well.isInjector()) {
|
|
from = Well::InjectorCMode2String(well_state.currentInjectionControls()[index_of_well_]);
|
|
} else {
|
|
from = Well::ProducerCMode2String(well_state.currentProductionControls()[index_of_well_]);
|
|
}
|
|
|
|
bool changed = false;
|
|
if (iog == IndividualOrGroup::Individual) {
|
|
changed = checkIndividualConstraints(well_state, summaryState);
|
|
} else if (iog == IndividualOrGroup::Group) {
|
|
changed = checkGroupConstraints(well_state, schedule, summaryState, deferred_logger);
|
|
} else {
|
|
assert(iog == IndividualOrGroup::Both);
|
|
changed = checkConstraints(well_state, schedule, summaryState, deferred_logger);
|
|
}
|
|
|
|
auto cc = Dune::MPIHelper::getCollectiveCommunication();
|
|
|
|
// checking whether control changed
|
|
if (changed) {
|
|
std::string to;
|
|
if (well.isInjector()) {
|
|
to = Well::InjectorCMode2String(well_state.currentInjectionControls()[index_of_well_]);
|
|
} else {
|
|
to = Well::ProducerCMode2String(well_state.currentProductionControls()[index_of_well_]);
|
|
}
|
|
std::ostringstream ss;
|
|
ss << " Switching control mode for well " << name()
|
|
<< " from " << from
|
|
<< " to " << to;
|
|
if (cc.size() > 1) {
|
|
ss << " on rank " << cc.rank();
|
|
}
|
|
deferred_logger.info(ss.str());
|
|
updateWellStateWithTarget(ebos_simulator, well_state, deferred_logger);
|
|
updatePrimaryVariables(well_state, deferred_logger);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
underPredictionMode() const
|
|
{
|
|
return well_ecl_.predictionMode();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
const Opm::PhaseUsage& pu = phaseUsage();
|
|
const int np = number_of_phases_;
|
|
|
|
if (econ_production_limits.onMinOilRate()) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
|
|
const double min_oil_rate = econ_production_limits.minOilRate();
|
|
if (std::abs(oil_rate) < min_oil_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinGasRate() ) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
|
const double gas_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Gas ] ];
|
|
const double min_gas_rate = econ_production_limits.minGasRate();
|
|
if (std::abs(gas_rate) < min_gas_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinLiquidRate() ) {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
const double oil_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Oil ] ];
|
|
const double water_rate = well_state.wellRates()[index_of_well_ * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
const double min_liquid_rate = econ_production_limits.minLiquidRate();
|
|
if (std::abs(liquid_rate) < min_liquid_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinReservoirFluidRate()) {
|
|
deferred_logger.warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
RatioLimitCheckReport& report) const
|
|
{
|
|
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
|
|
// function to calculate water cut based on rates
|
|
auto waterCut = [](const std::vector<double>& rates,
|
|
const PhaseUsage& pu) {
|
|
|
|
const double oil_rate = rates[pu.phase_pos[Oil]];
|
|
const double water_rate = rates[pu.phase_pos[Water]];
|
|
|
|
// both rate should be in the same direction
|
|
assert(oil_rate * water_rate >= 0.);
|
|
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
if (liquid_rate != 0.) {
|
|
return (water_rate / liquid_rate);
|
|
} else {
|
|
return 0.;
|
|
}
|
|
};
|
|
|
|
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
|
|
assert(max_water_cut_limit > 0.);
|
|
|
|
const bool watercut_limit_violated = checkMaxRatioLimitWell(well_state, max_water_cut_limit, waterCut);
|
|
|
|
if (watercut_limit_violated) {
|
|
report.ratio_limit_violated = true;
|
|
checkMaxRatioLimitCompletions(well_state, max_water_cut_limit, waterCut, report);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
checkMaxGORLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
RatioLimitCheckReport& report) const
|
|
{
|
|
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
|
|
|
// function to calculate gor based on rates
|
|
auto gor = [](const std::vector<double>& rates,
|
|
const PhaseUsage& pu) {
|
|
|
|
const double oil_rate = rates[pu.phase_pos[Oil]];
|
|
const double gas_rate = rates[pu.phase_pos[Gas]];
|
|
|
|
// both rate should be in the same direction
|
|
assert(oil_rate * gas_rate >= 0.);
|
|
|
|
double gas_oil_ratio = 0.;
|
|
|
|
if (oil_rate != 0.) {
|
|
gas_oil_ratio = gas_rate / oil_rate;
|
|
} else {
|
|
if (gas_rate != 0.) {
|
|
gas_oil_ratio = 1.e100; // big value to mark it as violated
|
|
} else {
|
|
gas_oil_ratio = 0.0;
|
|
}
|
|
}
|
|
|
|
return gas_oil_ratio;
|
|
};
|
|
|
|
const double max_gor_limit = econ_production_limits.maxGasOilRatio();
|
|
assert(max_gor_limit > 0.);
|
|
|
|
const bool gor_limit_violated = checkMaxRatioLimitWell(well_state, max_gor_limit, gor);
|
|
|
|
if (gor_limit_violated) {
|
|
report.ratio_limit_violated = true;
|
|
checkMaxRatioLimitCompletions(well_state, max_gor_limit, gor, report);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
checkMaxWGRLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
RatioLimitCheckReport& report) const
|
|
{
|
|
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
|
|
|
// function to calculate wgr based on rates
|
|
auto wgr = [](const std::vector<double>& rates,
|
|
const PhaseUsage& pu) {
|
|
|
|
const double water_rate = rates[pu.phase_pos[Water]];
|
|
const double gas_rate = rates[pu.phase_pos[Gas]];
|
|
|
|
// both rate should be in the same direction
|
|
assert(water_rate * gas_rate >= 0.);
|
|
|
|
double water_gas_ratio = 0.;
|
|
|
|
if (gas_rate != 0.) {
|
|
water_gas_ratio = water_rate / gas_rate;
|
|
} else {
|
|
if (water_rate != 0.) {
|
|
water_gas_ratio = 1.e100; // big value to mark it as violated
|
|
} else {
|
|
water_gas_ratio = 0.0;
|
|
}
|
|
}
|
|
|
|
return water_gas_ratio;
|
|
};
|
|
|
|
const double max_wgr_limit = econ_production_limits.maxWaterGasRatio();
|
|
assert(max_wgr_limit > 0.);
|
|
|
|
const bool wgr_limit_violated = checkMaxRatioLimitWell(well_state, max_wgr_limit, wgr);
|
|
|
|
if (wgr_limit_violated) {
|
|
report.ratio_limit_violated = true;
|
|
checkMaxRatioLimitCompletions(well_state, max_wgr_limit, wgr, report);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
RatioLimitCheckReport& report,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// TODO: not sure how to define the worst-offending completion when more than one
|
|
// ratio related limit is violated.
|
|
// The defintion used here is that we define the violation extent based on the
|
|
// ratio between the value and the corresponding limit.
|
|
// For each violated limit, we decide the worst-offending completion separately.
|
|
// Among the worst-offending completions, we use the one has the biggest violation
|
|
// extent.
|
|
|
|
if (econ_production_limits.onMaxWaterCut()) {
|
|
checkMaxWaterCutLimit(econ_production_limits, well_state, report);
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasOilRatio()) {
|
|
checkMaxGORLimit(econ_production_limits, well_state, report);
|
|
}
|
|
|
|
if (econ_production_limits.onMaxWaterGasRatio()) {
|
|
checkMaxWGRLimit(econ_production_limits, well_state, report);
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasLiquidRatio()) {
|
|
deferred_logger.warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
|
|
}
|
|
|
|
if (report.ratio_limit_violated) {
|
|
assert(report.worst_offending_completion != INVALIDCOMPLETION);
|
|
assert(report.violation_extent > 1.);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
template<typename RatioFunc>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
checkMaxRatioLimitWell(const WellState& well_state,
|
|
const double max_ratio_limit,
|
|
const RatioFunc& ratioFunc) const
|
|
{
|
|
const int np = number_of_phases_;
|
|
|
|
std::vector<double> well_rates(np, 0.0);
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
well_rates[p] = well_state.wellRates()[index_of_well_ * np + p];
|
|
}
|
|
|
|
const double well_ratio = ratioFunc(well_rates, phaseUsage());
|
|
|
|
return (well_ratio > max_ratio_limit);
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
template<typename RatioFunc>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
checkMaxRatioLimitCompletions(const WellState& well_state,
|
|
const double max_ratio_limit,
|
|
const RatioFunc& ratioFunc,
|
|
RatioLimitCheckReport& report) const
|
|
{
|
|
int worst_offending_completion = INVALIDCOMPLETION;
|
|
|
|
// the maximum water cut value of the completions
|
|
// it is used to identify the most offending completion
|
|
double max_ratio_completion = 0;
|
|
|
|
// look for the worst_offending_completion
|
|
for (const auto& completion : completions_) {
|
|
|
|
const int np = number_of_phases_;
|
|
std::vector<double> completion_rates(np, 0.0);
|
|
|
|
// looping through the connections associated with the completion
|
|
const std::vector<int>& conns = completion.second;
|
|
for (const int c : conns) {
|
|
const int index_con = c + first_perf_;
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
const double connection_rate = well_state.perfPhaseRates()[index_con * np + p];
|
|
completion_rates[p] += connection_rate;
|
|
}
|
|
} // end of for (const int c : conns)
|
|
|
|
const double ratio_completion = ratioFunc(completion_rates, phaseUsage());
|
|
|
|
if (ratio_completion > max_ratio_completion) {
|
|
worst_offending_completion = completion.first;
|
|
max_ratio_completion = ratio_completion;
|
|
}
|
|
} // end of for (const auto& completion : completions_)
|
|
|
|
assert(max_ratio_completion > max_ratio_limit);
|
|
assert(worst_offending_completion != INVALIDCOMPLETION);
|
|
const double violation_extent = max_ratio_completion / max_ratio_limit;
|
|
assert(violation_extent > 1.0);
|
|
|
|
if (violation_extent > report.violation_extent) {
|
|
report.worst_offending_completion = worst_offending_completion;
|
|
report.violation_extent = violation_extent;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateWellTestState(const WellState& well_state,
|
|
const double& simulationTime,
|
|
const bool& writeMessageToOPMLog,
|
|
WellTestState& wellTestState,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
|
|
// currently, we only updateWellTestState for producers
|
|
if (this->isInjector()) {
|
|
return;
|
|
}
|
|
|
|
// Based on current understanding, only under prediction mode, we need to shut well due to various
|
|
// reasons or limits. With more knowlage or testing cases later, this might need to be corrected.
|
|
if (!underPredictionMode() ) {
|
|
return;
|
|
}
|
|
|
|
// updating well test state based on physical (THP/BHP) limits.
|
|
updateWellTestStatePhysical(well_state, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
|
|
|
|
// updating well test state based on Economic limits.
|
|
updateWellTestStateEconomic(well_state, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
|
|
|
|
// TODO: well can be shut/closed due to other reasons
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateWellTestStatePhysical(const WellState& /* well_state */,
|
|
const double simulation_time,
|
|
const bool write_message_to_opmlog,
|
|
WellTestState& well_test_state,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (!isOperable() || wellIsStopped_) {
|
|
if (well_test_state.hasWellClosed(name(), WellTestConfig::Reason::ECONOMIC) ||
|
|
well_test_state.hasWellClosed(name(), WellTestConfig::Reason::PHYSICAL) ) {
|
|
// Already closed, do nothing.
|
|
} else {
|
|
well_test_state.closeWell(name(), WellTestConfig::Reason::PHYSICAL, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
const std::string action = well_ecl_.getAutomaticShutIn() ? "shut" : "stopped";
|
|
const std::string msg = "Well " + name()
|
|
+ " will be " + action + " as it can not operate under current reservoir conditions.";
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateWellTestStateEconomic(const WellState& well_state,
|
|
const double simulation_time,
|
|
const bool write_message_to_opmlog,
|
|
WellTestState& well_test_state,
|
|
Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
if (wellIsStopped_)
|
|
return;
|
|
|
|
const WellEconProductionLimits& econ_production_limits = well_ecl_.getEconLimits();
|
|
|
|
// if no limit is effective here, then continue to the next well
|
|
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
|
|
return;
|
|
}
|
|
|
|
// flag to check if the mim oil/gas rate limit is violated
|
|
bool rate_limit_violated = false;
|
|
|
|
// for the moment, we only handle rate limits, not handling potential limits
|
|
// the potential limits should not be difficult to add
|
|
const auto& quantity_limit = econ_production_limits.quantityLimit();
|
|
if (quantity_limit == WellEconProductionLimits::QuantityLimit::POTN) {
|
|
const std::string msg = std::string("POTN limit for well ") + name() + std::string(" is not supported for the moment. \n")
|
|
+ std::string("All the limits will be evaluated based on RATE. ");
|
|
deferred_logger.warning("NOT_SUPPORTING_POTN", msg);
|
|
}
|
|
|
|
if (econ_production_limits.onAnyRateLimit()) {
|
|
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, deferred_logger);
|
|
}
|
|
|
|
if (rate_limit_violated) {
|
|
if (econ_production_limits.endRun()) {
|
|
const std::string warning_message = std::string("ending run after well closed due to economic limits")
|
|
+ std::string("is not supported yet \n")
|
|
+ std::string("the program will keep running after ") + name()
|
|
+ std::string(" is closed");
|
|
deferred_logger.warning("NOT_SUPPORTING_ENDRUN", warning_message);
|
|
}
|
|
|
|
if (econ_production_limits.validFollowonWell()) {
|
|
deferred_logger.warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
|
|
}
|
|
|
|
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
if (well_ecl_.getAutomaticShutIn()) {
|
|
const std::string msg = std::string("well ") + name() + std::string(" will be shut due to rate economic limit");
|
|
deferred_logger.info(msg);
|
|
} else {
|
|
const std::string msg = std::string("well ") + name() + std::string(" will be stopped due to rate economic limit");
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
// the well is closed, not need to check other limits
|
|
return;
|
|
}
|
|
|
|
|
|
if ( !econ_production_limits.onAnyRatioLimit() ) {
|
|
// there is no need to check the ratio limits
|
|
return;
|
|
}
|
|
|
|
// checking for ratio related limits, mostly all kinds of ratio.
|
|
RatioLimitCheckReport ratio_report;
|
|
|
|
checkRatioEconLimits(econ_production_limits, well_state, ratio_report, deferred_logger);
|
|
|
|
if (ratio_report.ratio_limit_violated) {
|
|
const auto workover = econ_production_limits.workover();
|
|
switch (workover) {
|
|
case WellEconProductionLimits::EconWorkover::CON:
|
|
{
|
|
const int worst_offending_completion = ratio_report.worst_offending_completion;
|
|
|
|
well_test_state.addClosedCompletion(name(), worst_offending_completion, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
if (worst_offending_completion < 0) {
|
|
const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion)
|
|
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
|
|
deferred_logger.info(msg);
|
|
} else {
|
|
const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion)
|
|
+ std::string(" for well ") + name() + std::string(" will be closed due to economic limit");
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
|
|
bool allCompletionsClosed = true;
|
|
const auto& connections = well_ecl_.getConnections();
|
|
for (const auto& connection : connections) {
|
|
if (connection.state() == Connection::State::OPEN
|
|
&& !well_test_state.hasCompletion(name(), connection.complnum())) {
|
|
allCompletionsClosed = false;
|
|
}
|
|
}
|
|
|
|
if (allCompletionsClosed) {
|
|
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
if (well_ecl_.getAutomaticShutIn()) {
|
|
const std::string msg = name() + std::string(" will be shut due to last completion closed");
|
|
deferred_logger.info(msg);
|
|
} else {
|
|
const std::string msg = name() + std::string(" will be stopped due to last completion closed");
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case WellEconProductionLimits::EconWorkover::WELL:
|
|
{
|
|
well_test_state.closeWell(name(), WellTestConfig::Reason::ECONOMIC, simulation_time);
|
|
if (write_message_to_opmlog) {
|
|
if (well_ecl_.getAutomaticShutIn()) {
|
|
// tell the control that the well is closed
|
|
const std::string msg = name() + std::string(" will be shut due to ratio economic limit");
|
|
deferred_logger.info(msg);
|
|
} else {
|
|
const std::string msg = name() + std::string(" will be stopped due to ratio economic limit");
|
|
deferred_logger.info(msg);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case WellEconProductionLimits::EconWorkover::NONE:
|
|
break;
|
|
default:
|
|
{
|
|
deferred_logger.warning("NOT_SUPPORTED_WORKOVER_TYPE",
|
|
"not supporting workover type " + WellEconProductionLimits::EconWorkover2String(workover) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
wellTesting(const Simulator& simulator, const std::vector<double>& B_avg,
|
|
const double simulation_time, const int report_step,
|
|
const WellTestConfig::Reason testing_reason,
|
|
/* const */ WellState& well_state,
|
|
WellTestState& well_test_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
if (testing_reason == WellTestConfig::Reason::PHYSICAL) {
|
|
wellTestingPhysical(simulator, B_avg, simulation_time, report_step,
|
|
well_state, well_test_state, deferred_logger);
|
|
}
|
|
|
|
if (testing_reason == WellTestConfig::Reason::ECONOMIC) {
|
|
wellTestingEconomic(simulator, B_avg, simulation_time,
|
|
well_state, well_test_state, deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
wellTestingEconomic(const Simulator& simulator, const std::vector<double>& B_avg,
|
|
const double simulation_time, const WellState& well_state,
|
|
WellTestState& welltest_state, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
deferred_logger.info(" well " + name() + " is being tested for economic limits");
|
|
|
|
WellState well_state_copy = well_state;
|
|
|
|
updateWellStateWithTarget(simulator, well_state_copy, deferred_logger);
|
|
calculateExplicitQuantities(simulator, well_state_copy, deferred_logger);
|
|
updatePrimaryVariables(well_state_copy, deferred_logger);
|
|
initPrimaryVariablesEvaluation();
|
|
|
|
WellTestState welltest_state_temp;
|
|
|
|
bool testWell = true;
|
|
// if a well is closed because all completions are closed, we need to check each completion
|
|
// individually. We first open all completions, then we close one by one by calling updateWellTestState
|
|
// untill the number of closed completions do not increase anymore.
|
|
while (testWell) {
|
|
const size_t original_number_closed_completions = welltest_state_temp.sizeCompletions();
|
|
solveWellForTesting(simulator, well_state_copy, B_avg, deferred_logger);
|
|
updateWellTestState(well_state_copy, simulation_time, /*writeMessageToOPMLog=*/ false, welltest_state_temp, deferred_logger);
|
|
closeCompletions(welltest_state_temp);
|
|
|
|
// Stop testing if the well is closed or shut due to all completions shut
|
|
// Also check if number of completions has increased. If the number of closed completions do not increased
|
|
// we stop the testing.
|
|
// TODO: it can be tricky here, if the well is shut/closed due to other reasons
|
|
if ( welltest_state_temp.sizeWells() > 0 ||
|
|
(original_number_closed_completions == welltest_state_temp.sizeCompletions()) ) {
|
|
testWell = false; // this terminates the while loop
|
|
}
|
|
}
|
|
|
|
// update wellTestState if the well test succeeds
|
|
if (!welltest_state_temp.hasWellClosed(name(), WellTestConfig::Reason::ECONOMIC)) {
|
|
welltest_state.openWell(name(), WellTestConfig::Reason::ECONOMIC);
|
|
const std::string msg = std::string("well ") + name() + std::string(" is re-opened through ECONOMIC testing");
|
|
deferred_logger.info(msg);
|
|
|
|
// also reopen completions
|
|
for (auto& completion : well_ecl_.getCompletions()) {
|
|
if (!welltest_state_temp.hasCompletion(name(), completion.first)) {
|
|
welltest_state.dropCompletion(name(), completion.first);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
computeRepRadiusPerfLength(const Grid& grid,
|
|
const std::vector<int>& cartesian_to_compressed,
|
|
Opm::DeferredLogger& deferred_logger
|
|
)
|
|
{
|
|
const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
|
|
auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
|
|
auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);
|
|
|
|
const int nperf = number_of_perforations_;
|
|
|
|
perf_rep_radius_.clear();
|
|
perf_length_.clear();
|
|
bore_diameters_.clear();
|
|
|
|
perf_rep_radius_.reserve(nperf);
|
|
perf_length_.reserve(nperf);
|
|
bore_diameters_.reserve(nperf);
|
|
|
|
// COMPDAT handling
|
|
const auto& connectionSet = well_ecl_.getConnections();
|
|
for (size_t c=0; c<connectionSet.size(); c++) {
|
|
const auto& connection = connectionSet.get(c);
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
const int i = connection.getI();
|
|
const int j = connection.getJ();
|
|
const int k = connection.getK();
|
|
|
|
const int* cpgdim = cart_dims;
|
|
const int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
|
|
const int cell = cartesian_to_compressed[cart_grid_indx];
|
|
|
|
if (cell < 0) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
|
|
<< k << " not found in grid (well = " << name() << ')', deferred_logger);
|
|
}
|
|
|
|
{
|
|
double radius = connection.rw();
|
|
const std::array<double, 3> cubical =
|
|
wellhelpers::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);
|
|
|
|
double re; // area equivalent radius of the grid block
|
|
double perf_length; // the length of the well perforation
|
|
|
|
switch (connection.dir()) {
|
|
case Opm::Connection::Direction::X:
|
|
re = std::sqrt(cubical[1] * cubical[2] / M_PI);
|
|
perf_length = cubical[0];
|
|
break;
|
|
case Opm::Connection::Direction::Y:
|
|
re = std::sqrt(cubical[0] * cubical[2] / M_PI);
|
|
perf_length = cubical[1];
|
|
break;
|
|
case Opm::Connection::Direction::Z:
|
|
re = std::sqrt(cubical[0] * cubical[1] / M_PI);
|
|
perf_length = cubical[2];
|
|
break;
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, " Dirtecion of well is not supported ", deferred_logger);
|
|
}
|
|
|
|
const double repR = std::sqrt(re * radius);
|
|
perf_rep_radius_.push_back(repR);
|
|
perf_length_.push_back(perf_length);
|
|
bore_diameters_.push_back(2. * radius);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
WellInterface<TypeTag>::scalingFactor(const int phaseIdx) const
|
|
{
|
|
const auto& pu = phaseUsage();
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx)
|
|
return 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx)
|
|
return 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx)
|
|
return 0.01;
|
|
if (has_solvent && phaseIdx == contiSolventEqIdx )
|
|
return 0.01;
|
|
|
|
// we should not come this far
|
|
assert(false);
|
|
return 1.0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::isVFPActive(Opm::DeferredLogger& deferred_logger) const
|
|
{
|
|
// since the well_controls only handles the VFP number when THP constraint/target is there.
|
|
// we need to get the table number through the parser, in case THP constraint/target is not there.
|
|
// When THP control/limit is not active, if available VFP table is provided, we will still need to
|
|
// update THP value. However, it will only used for output purpose.
|
|
if (isProducer()) { // producer
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
if (table_id <= 0) {
|
|
return false;
|
|
} else {
|
|
if (vfp_properties_->getProd()->hasTable(table_id)) {
|
|
return true;
|
|
} else {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specfied,"
|
|
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
|
|
}
|
|
}
|
|
|
|
} else { // injector
|
|
const int table_id = well_ecl_.vfp_table_number();
|
|
if (table_id <= 0) {
|
|
return false;
|
|
} else {
|
|
if (vfp_properties_->getInj()->hasTable(table_id)) {
|
|
return true;
|
|
} else {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specfied,"
|
|
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
iterateWellEquations(const Simulator& ebosSimulator,
|
|
const std::vector<double>& B_avg,
|
|
const double dt,
|
|
WellState& well_state,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& summary_state = ebosSimulator.vanguard().summaryState();
|
|
const auto inj_controls = well_ecl_.isInjector() ? well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0);
|
|
const auto prod_controls = well_ecl_.isProducer() ? well_ecl_.productionControls(summary_state) : Well::ProductionControls(0);
|
|
|
|
return this->iterateWellEqWithControl(ebosSimulator, B_avg, dt, inj_controls, prod_controls, well_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::calculateReservoirRates(WellState& well_state) const
|
|
{
|
|
const int fipreg = 0; // not considering the region for now
|
|
const int np = number_of_phases_;
|
|
|
|
std::vector<double> surface_rates(np, 0.0);
|
|
const int well_rate_index = np * index_of_well_;
|
|
for (int p = 0; p < np; ++p) {
|
|
surface_rates[p] = well_state.wellRates()[well_rate_index + p];
|
|
}
|
|
|
|
std::vector<double> voidage_rates(np, 0.0);
|
|
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellReservoirRates()[well_rate_index + p] = voidage_rates[p];
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::closeCompletions(WellTestState& wellTestState)
|
|
{
|
|
const auto& connections = well_ecl_.getConnections();
|
|
int perfIdx = 0;
|
|
for (const auto& connection : connections) {
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
if (wellTestState.hasCompletion(name(), connection.complnum())) {
|
|
well_index_[perfIdx] = 0.0;
|
|
}
|
|
perfIdx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
solveWellForTesting(const Simulator& ebosSimulator, WellState& well_state,
|
|
const std::vector<double>& B_avg,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
// keep a copy of the original well state
|
|
const WellState well_state0 = well_state;
|
|
const double dt = ebosSimulator.timeStepSize();
|
|
const bool converged = iterateWellEquations(ebosSimulator, B_avg, dt, well_state, deferred_logger);
|
|
if (converged) {
|
|
deferred_logger.debug("WellTest: Well equation for well " + name() + " converged");
|
|
} else {
|
|
const int max_iter = param_.max_welleq_iter_;
|
|
deferred_logger.debug("WellTest: Well equation for well " +name() + " failed converging in "
|
|
+ std::to_string(max_iter) + " iterations");
|
|
well_state = well_state0;
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::scaleProductivityIndex(const int perfIdx, double& productivity_index, const bool new_well, Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& connection = well_ecl_.getConnections()[originalConnectionIndex_[perfIdx]];
|
|
if (well_ecl_.getDrainageRadius() < 0) {
|
|
if (new_well && perfIdx == 0) {
|
|
deferred_logger.warning("PRODUCTIVITY_INDEX_WARNING", "Negative drainage radius not supported. The productivity index is set to zero");
|
|
}
|
|
productivity_index = 0.0;
|
|
return;
|
|
}
|
|
|
|
if (connection.r0() > well_ecl_.getDrainageRadius()) {
|
|
if (new_well && well_productivity_index_logger_counter_ < 1) {
|
|
deferred_logger.info("PRODUCTIVITY_INDEX_INFO", "The effective radius is larger than the well drainage radius for well " + name() +
|
|
" They are set to equal in the well productivity index calculations");
|
|
well_productivity_index_logger_counter_++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// For zero drainage radius the productivity index is just the transmissibility times the mobility
|
|
if (well_ecl_.getDrainageRadius() == 0) {
|
|
return;
|
|
}
|
|
|
|
// Scale the productivity index to account for the drainage radius.
|
|
// Assumes steady radial flow only valied for horizontal wells
|
|
productivity_index *=
|
|
(std::log(connection.r0() / connection.rw()) + connection.skinFactor()) /
|
|
(std::log(well_ecl_.getDrainageRadius() / connection.rw()) + connection.skinFactor());
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::addCellRates(RateVector& rates, int cellIdx) const
|
|
{
|
|
for (int perfIdx = 0; perfIdx < number_of_perforations_; ++perfIdx) {
|
|
if (cells()[perfIdx] == cellIdx) {
|
|
for (int i = 0; i < RateVector::dimension; ++i) {
|
|
rates[i] += connectionRates_[perfIdx][i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::volumetricSurfaceRateForConnection(int cellIdx, int phaseIdx) const {
|
|
for (int perfIdx = 0; perfIdx < number_of_perforations_; ++perfIdx) {
|
|
if (cells()[perfIdx] == cellIdx) {
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
return connectionRates_[perfIdx][activeCompIdx].value();
|
|
}
|
|
}
|
|
// this is not thread safe
|
|
OPM_THROW(std::invalid_argument, "The well with name " + name()
|
|
+ " does not perforate cell " + std::to_string(cellIdx));
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
isOperable() const {
|
|
return operability_status_.isOperable();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::checkConstraints(WellState& well_state,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
const bool ind_broken = checkIndividualConstraints(well_state, summaryState);
|
|
if (ind_broken) {
|
|
return true;
|
|
} else {
|
|
return checkGroupConstraints(well_state, schedule, summaryState, deferred_logger);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::checkIndividualConstraints(WellState& well_state,
|
|
const SummaryState& summaryState) const
|
|
{
|
|
const auto& well = well_ecl_;
|
|
const PhaseUsage& pu = phaseUsage();
|
|
const int well_index = index_of_well_;
|
|
const auto wellrate_index = well_index * pu.num_phases;
|
|
|
|
if (well.isInjector()) {
|
|
const auto controls = well.injectionControls(summaryState);
|
|
Opm::Well::InjectorCMode& currentControl = well_state.currentInjectionControls()[well_index];
|
|
|
|
if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP)
|
|
{
|
|
const auto& bhp = controls.bhp_limit;
|
|
double current_bhp = well_state.bhp()[well_index];
|
|
if (bhp < current_bhp) {
|
|
currentControl = Well::InjectorCMode::BHP;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE)
|
|
{
|
|
InjectorType injectorType = controls.injector_type;
|
|
double current_rate = 0.0;
|
|
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
current_rate = well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ];
|
|
break;
|
|
}
|
|
default:
|
|
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
|
|
}
|
|
|
|
if (controls.surface_rate < current_rate) {
|
|
currentControl = Well::InjectorCMode::RATE;
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV)
|
|
{
|
|
double current_rate = 0.0;
|
|
if( pu.phase_used[BlackoilPhases::Aqua] )
|
|
current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
|
|
|
|
if( pu.phase_used[BlackoilPhases::Liquid] )
|
|
current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
|
|
|
|
if( pu.phase_used[BlackoilPhases::Vapour] )
|
|
current_rate += well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ];
|
|
|
|
if (controls.reservoir_rate < current_rate) {
|
|
currentControl = Well::InjectorCMode::RESV;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP)
|
|
{
|
|
const auto& thp = controls.thp_limit;
|
|
double current_thp = well_state.thp()[well_index];
|
|
if (thp < current_thp) {
|
|
currentControl = Well::InjectorCMode::THP;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (well.isProducer( )) {
|
|
const auto controls = well.productionControls(summaryState);
|
|
Well::ProducerCMode& currentControl = well_state.currentProductionControls()[well_index];
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP )
|
|
{
|
|
const double bhp = controls.bhp_limit;
|
|
double current_bhp = well_state.bhp()[well_index];
|
|
if (bhp > current_bhp) {
|
|
currentControl = Well::ProducerCMode::BHP;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) {
|
|
double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
|
|
if (controls.oil_rate < current_rate ) {
|
|
currentControl = Well::ProducerCMode::ORAT;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT ) {
|
|
double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
|
|
if (controls.water_rate < current_rate ) {
|
|
currentControl = Well::ProducerCMode::WRAT;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT ) {
|
|
double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ];
|
|
if (controls.gas_rate < current_rate ) {
|
|
currentControl = Well::ProducerCMode::GRAT;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) {
|
|
double current_rate = -well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
|
|
current_rate -= well_state.wellRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
|
|
if (controls.liquid_rate < current_rate ) {
|
|
currentControl = Well::ProducerCMode::LRAT;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV ) {
|
|
double current_rate = 0.0;
|
|
if( pu.phase_used[BlackoilPhases::Aqua] )
|
|
current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Aqua] ];
|
|
|
|
if( pu.phase_used[BlackoilPhases::Liquid] )
|
|
current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Liquid] ];
|
|
|
|
if( pu.phase_used[BlackoilPhases::Vapour] )
|
|
current_rate -= well_state.wellReservoirRates()[ wellrate_index + pu.phase_pos[BlackoilPhases::Vapour] ];
|
|
|
|
if (controls.prediction_mode && controls.resv_rate > current_rate) {
|
|
currentControl = Well::ProducerCMode::RESV;
|
|
return true;
|
|
}
|
|
|
|
if (!controls.prediction_mode) {
|
|
const int fipreg = 0; // not considering the region for now
|
|
const int np = number_of_phases_;
|
|
|
|
std::vector<double> surface_rates(np, 0.0);
|
|
if( pu.phase_used[BlackoilPhases::Aqua] )
|
|
surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate;
|
|
if( pu.phase_used[BlackoilPhases::Liquid] )
|
|
surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate;
|
|
if( pu.phase_used[BlackoilPhases::Vapour] )
|
|
surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate;
|
|
|
|
std::vector<double> voidage_rates(np, 0.0);
|
|
rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates);
|
|
|
|
double resv_rate = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
resv_rate += voidage_rates[p];
|
|
}
|
|
|
|
if (resv_rate < current_rate) {
|
|
currentControl = Well::ProducerCMode::RESV;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (controls.hasControl(Well::ProducerCMode::THP) && currentControl != Well::ProducerCMode::THP)
|
|
{
|
|
const auto& thp = controls.thp_limit;
|
|
double current_thp = well_state.thp()[well_index];
|
|
if (thp > current_thp) {
|
|
currentControl = Well::ProducerCMode::THP;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::checkGroupConstraints(WellState& well_state,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
const auto& well = well_ecl_;
|
|
const int well_index = index_of_well_;
|
|
|
|
if (well.isInjector()) {
|
|
Opm::Well::InjectorCMode& currentControl = well_state.currentInjectionControls()[well_index];
|
|
|
|
if (currentControl != Well::InjectorCMode::GRUP) {
|
|
// This checks only the first encountered group limit,
|
|
// in theory there could be several, and then we should
|
|
// test all but the one currently applied. At that point,
|
|
// this if-statement should be removed and we should always
|
|
// check, skipping over only the single group parent whose
|
|
// control is the active one for the well (if any).
|
|
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
|
|
const double efficiencyFactor = well.getEfficiencyFactor();
|
|
const std::pair<bool, double> group_constraint = checkGroupConstraintsInj(
|
|
group, well_state, efficiencyFactor, schedule, summaryState, deferred_logger);
|
|
// If a group constraint was broken, we set the current well control to
|
|
// be GRUP.
|
|
if (group_constraint.first) {
|
|
well_state.currentInjectionControls()[index_of_well_] = Well::InjectorCMode::GRUP;
|
|
const int np = well_state.numPhases();
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[index_of_well_*np + p] *= group_constraint.second;
|
|
}
|
|
}
|
|
return group_constraint.first;
|
|
}
|
|
}
|
|
|
|
if (well.isProducer( )) {
|
|
Well::ProducerCMode& currentControl = well_state.currentProductionControls()[well_index];
|
|
|
|
if (currentControl != Well::ProducerCMode::GRUP) {
|
|
// This checks only the first encountered group limit,
|
|
// in theory there could be several, and then we should
|
|
// test all but the one currently applied. At that point,
|
|
// this if-statement should be removed and we should always
|
|
// check, skipping over only the single group parent whose
|
|
// control is the active one for the well (if any).
|
|
const auto& group = schedule.getGroup( well.groupName(), current_step_ );
|
|
const double efficiencyFactor = well.getEfficiencyFactor();
|
|
const std::pair<bool, double> group_constraint = checkGroupConstraintsProd(
|
|
group, well_state, efficiencyFactor, schedule, summaryState, deferred_logger);
|
|
// If a group constraint was broken, we set the current well control to
|
|
// be GRUP.
|
|
if (group_constraint.first) {
|
|
well_state.currentProductionControls()[index_of_well_] = Well::ProducerCMode::GRUP;
|
|
const int np = well_state.numPhases();
|
|
for (int p = 0; p<np; ++p) {
|
|
well_state.wellRates()[index_of_well_*np + p] *= group_constraint.second;
|
|
}
|
|
}
|
|
return group_constraint.first;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
std::pair<bool, double>
|
|
WellInterface<TypeTag>::checkGroupConstraintsInj(const Group& group,
|
|
const WellState& well_state,
|
|
const double efficiencyFactor,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Translate injector type from control to Phase.
|
|
const auto& well_controls = well_ecl_.injectionControls(summaryState);
|
|
auto injectorType = well_controls.injector_type;
|
|
Phase injectionPhase;
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
injectionPhase = Phase::WATER;
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
injectionPhase = Phase::OIL;
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
injectionPhase = Phase::GAS;
|
|
break;
|
|
}
|
|
default:
|
|
throw("Expected WATER, OIL or GAS as type for injector " + name());
|
|
}
|
|
|
|
// Make conversion factors for RESV <-> surface rates.
|
|
std::vector<double> resv_coeff(phaseUsage().num_phases, 1.0);
|
|
rateConverter_.calcCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
|
|
|
|
// Call check for the well's injection phase.
|
|
return WellGroupHelpers::checkGroupConstraintsInj(name(),
|
|
well_ecl_.groupName(),
|
|
group,
|
|
well_state,
|
|
current_step_,
|
|
guide_rate_,
|
|
well_state.wellRates().data() + index_of_well_ * phaseUsage().num_phases,
|
|
injectionPhase,
|
|
phaseUsage(),
|
|
efficiencyFactor,
|
|
schedule,
|
|
summaryState,
|
|
resv_coeff,
|
|
deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
std::pair<bool, double>
|
|
WellInterface<TypeTag>::checkGroupConstraintsProd(const Group& group,
|
|
const WellState& well_state,
|
|
const double efficiencyFactor,
|
|
const Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Make conversion factors for RESV <-> surface rates.
|
|
std::vector<double> resv_coeff(phaseUsage().num_phases, 1.0);
|
|
rateConverter_.calcCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
|
|
|
|
return WellGroupHelpers::checkGroupConstraintsProd(name(),
|
|
well_ecl_.groupName(),
|
|
group,
|
|
well_state,
|
|
current_step_,
|
|
guide_rate_,
|
|
well_state.wellRates().data() + index_of_well_ * phaseUsage().num_phases,
|
|
phaseUsage(),
|
|
efficiencyFactor,
|
|
schedule,
|
|
summaryState,
|
|
resv_coeff,
|
|
deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
template <class EvalWell, class BhpFromThpFunc>
|
|
void
|
|
WellInterface<TypeTag>::assembleControlEqInj(const WellState& well_state,
|
|
const Opm::Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
const Well::InjectionControls& controls,
|
|
const EvalWell& bhp,
|
|
const EvalWell& injection_rate,
|
|
BhpFromThpFunc bhp_from_thp,
|
|
EvalWell& control_eq,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const Opm::Well::InjectorCMode& current = well_state.currentInjectionControls()[index_of_well_];
|
|
const InjectorType injectorType = controls.injector_type;
|
|
const auto& pu = phaseUsage();
|
|
const double efficiencyFactor = well_ecl_.getEfficiencyFactor();
|
|
|
|
switch (current) {
|
|
case Well::InjectorCMode::RATE: {
|
|
control_eq = injection_rate - controls.surface_rate;
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::RESV: {
|
|
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
|
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
|
|
|
|
double coeff = 1.0;
|
|
|
|
switch (injectorType) {
|
|
case InjectorType::WATER: {
|
|
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Aqua]];
|
|
break;
|
|
}
|
|
case InjectorType::OIL: {
|
|
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Liquid]];
|
|
break;
|
|
}
|
|
case InjectorType::GAS: {
|
|
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Vapour]];
|
|
break;
|
|
}
|
|
default:
|
|
throw("Expected WATER, OIL or GAS as type for injectors " + well_ecl_.name());
|
|
}
|
|
|
|
control_eq = coeff * injection_rate - controls.reservoir_rate;
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::THP: {
|
|
control_eq = bhp - bhp_from_thp();
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::BHP: {
|
|
control_eq = bhp - controls.bhp_limit;
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::GRUP: {
|
|
assert(well_ecl_.isAvailableForGroupControl());
|
|
const auto& group = schedule.getGroup(well_ecl_.groupName(), current_step_);
|
|
getGroupInjectionControl(group,
|
|
well_state,
|
|
schedule,
|
|
summaryState,
|
|
injectorType,
|
|
bhp,
|
|
injection_rate,
|
|
control_eq,
|
|
efficiencyFactor);
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::CMODE_UNDEFINED: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
template <class EvalWell, class BhpFromThpFunc>
|
|
void
|
|
WellInterface<TypeTag>::assembleControlEqProd(const WellState& well_state,
|
|
const Opm::Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
const Well::ProductionControls& controls,
|
|
const EvalWell& bhp,
|
|
const std::vector<EvalWell>& rates, // Always 3 canonical rates.
|
|
BhpFromThpFunc bhp_from_thp,
|
|
EvalWell& control_eq,
|
|
Opm::DeferredLogger& deferred_logger)
|
|
{
|
|
const Well::ProducerCMode& current = well_state.currentProductionControls()[index_of_well_];
|
|
const auto& pu = phaseUsage();
|
|
const double efficiencyFactor = well_ecl_.getEfficiencyFactor();
|
|
|
|
switch (current) {
|
|
case Well::ProducerCMode::ORAT: {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
const EvalWell rate = -rates[BlackoilPhases::Liquid];
|
|
control_eq = rate - controls.oil_rate;
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::WRAT: {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
const EvalWell rate = -rates[BlackoilPhases::Aqua];
|
|
control_eq = rate - controls.water_rate;
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::GRAT: {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
|
|
const EvalWell rate = -rates[BlackoilPhases::Vapour];
|
|
control_eq = rate - controls.gas_rate;
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::LRAT: {
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
|
|
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
|
|
EvalWell rate = -rates[BlackoilPhases::Aqua] - rates[BlackoilPhases::Liquid];
|
|
control_eq = rate - controls.liquid_rate;
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::CRAT: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "CRAT control not supported " << name(), deferred_logger);
|
|
}
|
|
case Well::ProducerCMode::RESV: {
|
|
auto total_rate = rates[0]; // To get the correct type only.
|
|
total_rate = 0.0;
|
|
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
|
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
|
|
for (int phase = 0; phase < 3; ++phase) {
|
|
if (pu.phase_used[phase]) {
|
|
const int pos = pu.phase_pos[phase];
|
|
total_rate -= rates[phase] * convert_coeff[pos]; // Note different indices.
|
|
}
|
|
}
|
|
if (controls.prediction_mode) {
|
|
control_eq = total_rate - controls.resv_rate;
|
|
} else {
|
|
std::vector<double> hrates(number_of_phases_, 0.);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
hrates[pu.phase_pos[Water]] = controls.water_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
|
|
}
|
|
std::vector<double> hrates_resv(number_of_phases_, 0.);
|
|
rateConverter_.calcReservoirVoidageRates(/*fipreg*/ 0, pvtRegionIdx_, hrates, hrates_resv);
|
|
double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
|
|
control_eq = total_rate - target;
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::BHP: {
|
|
control_eq = bhp - controls.bhp_limit;
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::THP: {
|
|
control_eq = bhp - bhp_from_thp();
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::GRUP: {
|
|
assert(well_ecl_.isAvailableForGroupControl());
|
|
const auto& group = schedule.getGroup(well_ecl_.groupName(), current_step_);
|
|
// Annoying thing: the rates passed to this function are
|
|
// always of size 3 and in canonical (for PhaseUsage)
|
|
// order. This is what is needed for VFP calculations if
|
|
// they are required (THP controlled well). But for the
|
|
// group production control things we must pass only the
|
|
// active phases' rates.
|
|
std::vector<EvalWell> active_rates(pu.num_phases);
|
|
for (int canonical_phase = 0; canonical_phase < 3; ++canonical_phase) {
|
|
if (pu.phase_used[canonical_phase]) {
|
|
active_rates[pu.phase_pos[canonical_phase]] = rates[canonical_phase];
|
|
}
|
|
}
|
|
getGroupProductionControl(group, well_state, schedule, summaryState, bhp, active_rates, control_eq, efficiencyFactor);
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::CMODE_UNDEFINED: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger);
|
|
}
|
|
case Well::ProducerCMode::NONE: {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + name(), deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
template <class EvalWell>
|
|
void
|
|
WellInterface<TypeTag>::getGroupInjectionControl(const Group& group,
|
|
const WellState& well_state,
|
|
const Opm::Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
const InjectorType& injectorType,
|
|
const EvalWell& bhp,
|
|
const EvalWell& injection_rate,
|
|
EvalWell& control_eq,
|
|
double efficiencyFactor)
|
|
{
|
|
const auto& well = well_ecl_;
|
|
const auto pu = phaseUsage();
|
|
|
|
// Setting some defaults to silence warnings below.
|
|
// Will be overwritten in the switch statement.
|
|
int phasePos = -1;
|
|
Well::GuideRateTarget wellTarget = Well::GuideRateTarget::UNDEFINED;
|
|
Phase injectionPhase = Phase::WATER;
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
|
|
wellTarget = Well::GuideRateTarget::WAT;
|
|
injectionPhase = Phase::WATER;
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
|
|
wellTarget = Well::GuideRateTarget::OIL;
|
|
injectionPhase = Phase::OIL;
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
|
|
wellTarget = Well::GuideRateTarget::GAS;
|
|
injectionPhase = Phase::GAS;
|
|
break;
|
|
}
|
|
default:
|
|
// Should not be here.
|
|
assert(false);
|
|
}
|
|
|
|
const Group::InjectionCMode& currentGroupControl = well_state.currentInjectionGroupControl(injectionPhase, group.name());
|
|
|
|
if (currentGroupControl == Group::InjectionCMode::FLD ||
|
|
currentGroupControl == Group::InjectionCMode::NONE) {
|
|
if (!group.injectionGroupControlAvailable(injectionPhase)) {
|
|
// We cannot go any further up the hierarchy. This could
|
|
// be the FIELD group, or any group for which this has
|
|
// been set in GCONINJE or GCONPROD. If we are here
|
|
// anyway, it is likely that the deck set inconsistent
|
|
// requirements, such as GRUP control mode on a well with
|
|
// no appropriate controls defined on any of its
|
|
// containing groups. We will therefore use the wells' bhp
|
|
// limit equation as a fallback.
|
|
const auto& controls = well_ecl_.injectionControls(summaryState);
|
|
control_eq = bhp - controls.bhp_limit;
|
|
return;
|
|
} else {
|
|
// Inject share of parents control
|
|
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
|
|
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
|
getGroupInjectionControl(parent, well_state, schedule, summaryState, injectorType, bhp, injection_rate, control_eq, efficiencyFactor);
|
|
return;
|
|
}
|
|
}
|
|
|
|
assert(group.hasInjectionControl(injectionPhase));
|
|
const auto& groupcontrols = group.injectionControls(injectionPhase, summaryState);
|
|
|
|
const std::vector<double>& groupInjectionReductions = well_state.currentInjectionGroupReductionRates(group.name());
|
|
double groupTargetReduction = groupInjectionReductions[phasePos];
|
|
double fraction = WellGroupHelpers::fractionFromInjectionPotentials(well.name(),
|
|
group.name(),
|
|
schedule,
|
|
well_state,
|
|
current_step_,
|
|
guide_rate_,
|
|
GuideRateModel::convert_target(wellTarget),
|
|
pu,
|
|
injectionPhase,
|
|
false);
|
|
switch (currentGroupControl) {
|
|
case Group::InjectionCMode::NONE:
|
|
{
|
|
// The NONE case is handled earlier
|
|
assert(false);
|
|
break;
|
|
}
|
|
case Group::InjectionCMode::RATE:
|
|
{
|
|
double target = std::max(0.0, (groupcontrols.surface_max_rate - groupTargetReduction)) / efficiencyFactor;
|
|
control_eq = injection_rate - fraction * target;
|
|
break;
|
|
}
|
|
case Group::InjectionCMode::RESV:
|
|
{
|
|
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
|
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
|
|
double coeff = convert_coeff[phasePos];
|
|
double target = std::max(0.0, (groupcontrols.resv_max_rate/coeff - groupTargetReduction)) / efficiencyFactor;
|
|
control_eq = injection_rate - fraction * target;
|
|
break;
|
|
}
|
|
case Group::InjectionCMode::REIN:
|
|
{
|
|
double productionRate = well_state.currentInjectionREINRates(groupcontrols.reinj_group)[phasePos];
|
|
double target = std::max(0.0, (groupcontrols.target_reinj_fraction*productionRate - groupTargetReduction)) / efficiencyFactor;
|
|
control_eq = injection_rate - fraction * target;
|
|
break;
|
|
}
|
|
case Group::InjectionCMode::VREP:
|
|
{
|
|
std::vector<double> convert_coeff(number_of_phases_, 1.0);
|
|
rateConverter_.calcCoeff(/*fipreg*/ 0, pvtRegionIdx_, convert_coeff);
|
|
double coeff = convert_coeff[phasePos];
|
|
double voidageRate = well_state.currentInjectionVREPRates(groupcontrols.voidage_group)*groupcontrols.target_void_fraction;
|
|
|
|
double injReduction = 0.0;
|
|
std::vector<double> groupInjectionReservoirRates = well_state.currentInjectionGroupReservoirRates(group.name());
|
|
if (groupcontrols.phase != Phase::WATER)
|
|
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Aqua]];
|
|
|
|
if (groupcontrols.phase != Phase::OIL)
|
|
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Liquid]];
|
|
|
|
if (groupcontrols.phase != Phase::GAS)
|
|
injReduction += groupInjectionReservoirRates[pu.phase_pos[BlackoilPhases::Vapour]];
|
|
|
|
voidageRate -= injReduction;
|
|
|
|
double target = std::max(0.0, ( voidageRate/coeff - groupTargetReduction)) / efficiencyFactor;
|
|
control_eq = injection_rate - fraction * target;
|
|
break;
|
|
}
|
|
case Group::InjectionCMode::FLD:
|
|
{
|
|
// The FLD case is handled earlier
|
|
assert(false);
|
|
break;
|
|
}
|
|
case Group::InjectionCMode::SALE:
|
|
{
|
|
// only for gas injectors
|
|
assert (phasePos == pu.phase_pos[BlackoilPhases::Vapour]);
|
|
|
|
// Gas injection rate = Total gas production rate + gas import rate - gas consumption rate - sales rate;
|
|
// The import and consumption is already included in the REIN rates.
|
|
double inj_rate = well_state.currentInjectionREINRates(group.name())[phasePos];
|
|
const auto& gconsale = schedule.gConSale(current_step_).get(group.name(), summaryState);
|
|
inj_rate -= gconsale.sales_target;
|
|
|
|
double target = std::max(0.0, (inj_rate - groupTargetReduction)) / efficiencyFactor;
|
|
control_eq = injection_rate - fraction * target;
|
|
break;
|
|
}
|
|
// default:
|
|
// OPM_DEFLOG_THROW(std::runtime_error, "Unvalid group control specified for group " + well.groupName(), deferred_logger );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
template <class EvalWell>
|
|
void
|
|
WellInterface<TypeTag>::getGroupProductionControl(const Group& group,
|
|
const WellState& well_state,
|
|
const Opm::Schedule& schedule,
|
|
const SummaryState& summaryState,
|
|
const EvalWell& bhp,
|
|
const std::vector<EvalWell>& rates,
|
|
EvalWell& control_eq,
|
|
double efficiencyFactor)
|
|
{
|
|
const Group::ProductionCMode& currentGroupControl = well_state.currentProductionGroupControl(group.name());
|
|
if (currentGroupControl == Group::ProductionCMode::FLD ||
|
|
currentGroupControl == Group::ProductionCMode::NONE) {
|
|
if (!group.productionGroupControlAvailable()) {
|
|
// We cannot go any further up the hierarchy. This could
|
|
// be the FIELD group, or any group for which this has
|
|
// been set in GCONINJE or GCONPROD. If we are here
|
|
// anyway, it is likely that the deck set inconsistent
|
|
// requirements, such as GRUP control mode on a well with
|
|
// no appropriate controls defined on any of its
|
|
// containing groups. We will therefore use the wells' bhp
|
|
// limit equation as a fallback.
|
|
const auto& controls = well_ecl_.productionControls(summaryState);
|
|
control_eq = bhp - controls.bhp_limit;
|
|
return;
|
|
} else {
|
|
// Produce share of parents control
|
|
const auto& parent = schedule.getGroup( group.parent(), current_step_ );
|
|
efficiencyFactor *= group.getGroupEfficiencyFactor();
|
|
getGroupProductionControl(parent, well_state, schedule, summaryState, bhp, rates, control_eq, efficiencyFactor);
|
|
return;
|
|
}
|
|
}
|
|
|
|
const auto& well = well_ecl_;
|
|
const auto pu = phaseUsage();
|
|
|
|
if (!group.isProductionGroup()) {
|
|
// use bhp as control eq and let the updateControl code find a valid control
|
|
const auto& controls = well.productionControls(summaryState);
|
|
control_eq = bhp - controls.bhp_limit;
|
|
return;
|
|
}
|
|
|
|
// If we are here, we are at the topmost group to be visited in the recursion.
|
|
// This is the group containing the control we will check against.
|
|
|
|
// Make conversion factors for RESV <-> surface rates.
|
|
std::vector<double> resv_coeff(phaseUsage().num_phases, 1.0);
|
|
rateConverter_.calcCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS.
|
|
|
|
// gconsale may adjust the grat target.
|
|
// the adjusted rates is send to the targetCalculator
|
|
double gratTargetFromSales = 0.0;
|
|
if (well_state.hasGroupGratTargetFromSales(group.name()))
|
|
gratTargetFromSales = well_state.currentGroupGratTargetFromSales(group.name());
|
|
|
|
WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales);
|
|
WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, current_step_, guide_rate_, tcalc.guideTargetMode(), pu);
|
|
|
|
auto localFraction = [&](const std::string& child) {
|
|
return fcalc.localFraction(child, "");
|
|
};
|
|
|
|
auto localReduction = [&](const std::string& group_name) {
|
|
const std::vector<double>& groupTargetReductions = well_state.currentProductionGroupReductionRates(group_name);
|
|
return tcalc.calcModeRateFromRates(groupTargetReductions);
|
|
};
|
|
|
|
const double orig_target = tcalc.groupTarget(group.productionControls(summaryState));
|
|
const auto chain = WellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, current_step_);
|
|
// Because 'name' is the last of the elements, and not an ancestor, we subtract one below.
|
|
const size_t num_ancestors = chain.size() - 1;
|
|
double target = orig_target;
|
|
for (size_t ii = 0; ii < num_ancestors; ++ii) {
|
|
if ((ii == 0) || guide_rate_->has(chain[ii])) {
|
|
// Apply local reductions only at the control level
|
|
// (top) and for levels where we have a specified
|
|
// group guide rate.
|
|
target -= localReduction(chain[ii]);
|
|
}
|
|
target *= localFraction(chain[ii+1]);
|
|
}
|
|
// Avoid negative target rates coming from too large local reductions.
|
|
const double target_rate = std::max(0.0, target / efficiencyFactor);
|
|
const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers.
|
|
control_eq = current_rate - target_rate;
|
|
}
|
|
|
|
|
|
} // namespace Opm
|